Bear Beta^{*}

Zhongjin Lu[†]

Scott Murray[‡]

First version: June 2016

This version: January 2017

Abstract

We test the hypothesis that bear market risk – time-variation in investors' assessment of future bear market states – is negatively priced. To capture bear market risk, we construct an Arrow-Debreu state-contingent security – "AD Bear" – that has a terminal payoff of \$1 in bad market states and zero otherwise. We demonstrate theoretically and empirically that the short-term AD Bear return is a forward-looking measure of bear market risk. We find that stocks with high bear beta – high sensitivity to the AD Bear return – i.e. stocks that outperform when bear market risk increases, earn average returns 1% per month lower than low-bear beta stocks. Consistent with a risk-based explanation, the negative cross-sectional relation between bear beta and future returns remains strong among liquid and large stocks, persists for at least six months, and is robust to controlling for a long list of risk measures and anomaly variables.

Keywords: Arrow-Debreu State Prices, Bear Beta, Bear Market Risk, Downside Risk, Factor Models

JEL Classifications: G11, G12, G13, G17

^{*}We thank Robert Hodrick for earlier discussions on downside risk that inspired this project. We thank Vikas Agarwal, Turan Bali, Pierre Collin-Dufresne, George Gao, Mehdi Haghbaali, John Hund, Dalida Kadyrzhanova, Haim Kassa, Lars Lochstoer, Narayan Naik, Bradley Paye, Chip Ryan, Jessica Wachter, Yuhang Xing, Baozhang Yang, Xiaoyan Zhang, and seminar participants at the 2016 All Georgia Conference, Georgia State University, the University of Georgia, Arizona State University, Fidelity Management and Research, JP Morgan Investment Management, MFS Investment Management, RBC Global Asset Management, State Street Global Advisors, and T. Rowe Price for their insightful comments that have substantially improved the paper.

[†]Assistant Professor of Finance, Terry College of Business, University of Georgia, Athens, GA 30602; email zlu15@uga.edu.

[‡]Assistant Professor of Finance, J. Mack Robinson College of Business, Georgia State University, Atlanta, GA 30303; email smurray19@gsu.edu.

1 Introduction

Investors are known to be particularly averse to bear market states – states in which the market portfolio suffers a large loss.¹ As investors update their assessment of the prospect of future bear market states, security prices change accordingly. We refer to this time-variation in investors' ex ante assessment of future bear market states as "bear market risk".² The contribution of this paper is to empirically investigate the pricing implications of bear market risk. Our main hypothesis is that bear market risk carries a negative price of risk. Intuitively, an increase in the probability of a large market loss reduces investors' utility and increases marginal utility. Therefore, securities with high bear betas, i.e. stocks that outperform when the probability of future bear market states increases, should earn low average returns because they pay off when marginal utility is high.

Our key innovation is to develop a measure of bear market risk. Motivated by Breeden and Litzenberger (1978)'s observation that state prices can be discerned from option prices, we measure bear market risk using the returns of an Arrow (1964) and Debreu (1959) (AD) portfolio – AD Bear – constructed from S&P 500 index put options. The AD Bear portfolio pays off \$1 when the market at expiration is in a bear state.³ The price of the AD Bear portfolio is a forward-looking measure of the (risk-neutral) probability of future bear market states. The short-term AD Bear return therefore reflects the change in the *ex ante* probability of future bear market states, i.e., bear market risk.⁴ Using the theoretical model in Wachter (2013), we demonstrate that bear market risk is priced differently than CAPM market risk and that the component of the AD Bear portfolio hedged with respect to market risk, can be used to proxy for bear market risk. Consistent with our hypothesis, the AD Bear portfolio generates negative alpha relative to the CAPM and other standard factor models.

¹See Ang et al. (2006) and citations therein.

 $^{^{2}}$ Theoretical work (Gabaix (2012), Wachter (2013)) finds that incorporating time-variation in disaster risk, the consumption analog to bear market risk, into asset pricing models helps explain time-series variation in market returns.

 $^{^{3}}$ In our main specification, we define bear states to be states in which the market excess return is 1.5 standard deviations below zero or lower and use VIX as the measure of standard deviation.

⁴The use of the *short-term* AD Bear portfolio return, instead of hold-to-expiration return, is an important aspect of our analysis. The short-term return captures bear market risk, whereas the the hold-to-expiration return is completely determined by whether or not the market is in a bear state on the option expiration date.

In the focal tests of our main hypothesis, we form decile portfolios by sorting on bear beta, calculated from historical regressions of stock excess returns on AD Bear excess returns. We find that the post-formation value-weighted portfolio returns exhibit a strong decreasing pattern across bear beta deciles that cannot be explained by exposures to standard risk factors. A zero-investment portfolio that goes long the top bear beta decile portfolio and short bottom decile portfolio generates an average return of about -1% per month, three-factor alpha of about -1.25% per month, and five-factor alpha of about -0.70% per month.

For our results to be supportive of a rational risk pricing hypothesis, it is necessary that our portfolios, which are sorted on historically-estimated pre-formation bear betas, have strong variation in post-formation exposure to bear market risk. We therefore examine the post-formation sensitivity of the bear beta-sorted portfolios to bear market risk. We find that post-formation sensitivities show a pattern similar to that of the pre-formation sensitivities. The spread in post-formation bear market risk exposure between the high- and low-bear beta portfolios is both economically and statistically significant. To further distinguish the risk-factor explanation from a potential mispricing story, we repeat our portfolio tests using samples containing only liquid stocks and large cap stocks (approximately the 2000 most liquid stocks and the largest 1000 stocks, respectively), for which arbitrage costs are minimal, and find similar, if not stronger, results.

We are careful to differentiate the negative cross-sectional relation between bear beta and future returns from previously documented relations between risk and expected returns. We use bivariate portfolio analysis to control for several known risk-based pricing effects. Most importantly, we control for the downside beta in Ang, Chen, and Xing (2006). We also control for measures of aggregate volatility and jump risk such as VIX beta (Ang et al. (2006)) and the jump and volatility betas used in Cremers, Halling, and Weinbaum (2015). To ensure that our results are not driven by exposure to aggregate skewness risk, we control for coskewness (Harvey and Siddique (2000)) and aggregate skewness beta (Chang, Christoffersen, and Jacobs (2013)). Finally, we control for tail beta (Kelly and Jiang (2014)) and idiosyncratic volatility (Ang et al. (2006)). Our results demonstrate that none of these risk measures explains the negative relation between bear beta and expected stock returns. We then use Fama and MacBeth (1973, FM hereafter) regression analyses to simultaneously control for these risk measures, as well as other known predictors of expected returns such as market capitalization and the book-to-market ratio in Fama and French (1992), momentum in Jegadeesh and Titman (1993), illiquidity in Amihud (2002), profitability and investment in Fama and French (2015). The negative cross-sectional relation between bear beta and expected stock returns is highly robust to controlling for these previously documented effects in all three samples and the predictive power of bear beta persists for at least six months into the future.

Our work builds on previous research on downside risk. Ang, Chen, and Xing (2006)'s seminal paper shows that downside beta – the sensitivity of the stock's return to the market return when the market return is below its average – is positively related to the cross-section of expected stock returns.⁵ We combine the insights in Ang, Chen, and Xing (2006) and Breeden and Litzenberger (1978) and introduce a forward-looking measure of downside risk. Ang et al. (2006)'s downside beta, originally proposed by Bawa and Lindenberg (1977), is designed to capture the covariance between the stock return and the market return when a bear state occurs. In contrast, bear beta is the covariance between the stock return and the innovation in the probability of *future* bear states. To illustrate the difference, consider bear market states caused by the outbreak of war. Downside beta measures how a stock's price reacts when a war actually occurs. In contrast, bear beta measures the effect of changes in the probability of war, as international tensions increase or decrease, on the stock's price, even if a war does not actually materialize.

Empirically, since bear beta is a forward-looking measure that captures stock return covariance with changes in the probability of future bear states, it does not rely on bear state realizations. This offers two advantages. First, even though bear market states occur infrequently, because the probability of future bear market states varies continuously, we are able to use the full set of data to calculate bear beta. Second, bear beta is not subject to the potential peso problem arising from the fact that, in periods of prosperity, even the lowest returns may not represent bear states.

⁵Subsequent research follows this general theme. Bali, Cakici, and Whitelaw (2014) find that the left tail return covariance between individual stocks predicts future stock returns. Lettau, Maggiori, and Weber (2014) show that market betas differ depending on the market state and that betas in bad market states are a key determinant of expected returns for many asset classes. Chabi-Yo, Ruenzi, and Weigert (2015) find that stocks that underperform during crashes generate higher average returns.

Our paper also adds to the research that uses the forward-looking information in option prices to investigate relations between aggregate risk and the cross section of expected stock returns.⁶ Ang et al. (2006) and Cremers, Halling, and Weinbaum (2015) find that aggregate volatility risk is priced in the cross section of stock returns. Cremers, Halling, and Weinbaum (2015) also find that jump risk is priced. Since AD Bear has positive vega and gamma exposure, it is not surprising that bear beta has a positive cross-sectional relation with the volatility beta and jump beta used in Cremers, Halling, and Weinbaum (2015), as well as the VIX beta in Ang et al. (2006). We find that including jump beta, volatility beta, and VIX beta as controls does not explain the bear beta effect, indicating that we are capturing distinct pricing effects. Finally, Chang, Christoffersen, and Jacobs (2013) investigate whether innovations in the risk-neutral skewness of the market return is a risk factor and find a negative price of risk. Skewness is affected by both the left tail and right tail of the market return distribution since it captures the asymmetry between the two tails, while we focus solely on the left-tail. Bear beta has very low correlation with Chang, Christoffersen, and Jacobs (2013)'s skewness beta, and inclusion of skewness beta as a control does not impact our results.

The remainder of this paper proceeds as follows. In Section 2 we develop the theoretical motivation for our main research question and for the implementation of our empirical analyses. Section 3 discusses how we create the AD Bear portfolio and examines it returns. In Section 4 we show that stock-level sensitivity to the AD Bear portfolio is priced in the cross section of stocks. Section 5 demonstrates that our results are robust after controlling for previously documented pricing effects. Section 6 concludes.

⁶Bollerslev and Todorov (2011) use options to empirically demonstrate that time-varying tail risk is an important driver of the equity risk premium. There is a separate line of research that uses returns of option portfolios to evaluate the non-linear risk exposure of hedge funds (Lo (2001), Mitchell and Pulvino (2001), Agarwal and Naik (2004), Jurek and Stafford (2015), Agarwal, Arisoy, and Naik (2016)). Another distinct line of work examines the ability of information embedded in single stock options (instead of sensitivities to the returns of index options) to predict future returns (Bali and Hovakimian (2009), Cremers and Weinbaum (2010), Xing, Zhang, and Zhao (2010), Bali and Murray (2013), An et al. (2014)).

2 Theoretical Motivation for AD Bear

We begin by motivating AD Bear returns as a measure of bear market risk using Wachter (2013)'s time-varying rare disaster model.⁷ The benefit of doing so is a clear exposition of the relation between the pricing kernel, market risk, bear market risk, and AD Bear returns.

In Wachter (2013)'s model, the endowment (aggregate consumption, C_t) follows a jump-diffusion process

$$dC_t = \mu C_{t-} dt + \sigma C_{t-} dB_t + (e^{Z_t} - 1)C_{t-} dN_t,$$
(1)

where B_t is a standard Brownian motion and Z_t is a negative random variable with a time-invariant distribution that captures jump realizations. N_t is a Poisson process with time-varying intensity λ_t defined by

$$d\lambda_t = \kappa(\bar{\lambda} - \lambda_t) + \sigma_\lambda \sqrt{\lambda_t} dB_{\lambda,t}, \qquad (2)$$

where $B_{\lambda,t}$ is a standard Brownian motion independent of both B_t and Z_t . Three independent sources of risk affect the endowment process: 1) B_t – a standard Brownian motion capturing continuous consumption shocks, 2) Z_t – the realized consumption jump at time t, and 3) λ_t – the time-varying intensity of future jumps. Bear market risk in this model is the innovation in the intensity of future jumps, or $dB_{\lambda,t}$, since λ_t is the sole state variable that determines time-variation in investors' assessment of future bear market states.

Letting π_t be the stochastic discount factor (SDF), F_t be the price of the market portfolio, and X_t be the price of the AD Bear portfolio, Table 1 examines the exposures of the SDF, F_t , and X_t to the three sources of risk.⁸ The subsequent discussions focus on the first-order effects of the three shocks. In our empirical analyses we are careful to control for potential exposure to higher-order effects by controlling for jump risk and aggregate skewness risk.

The sensitivity of the SDF to dB_t (continuous consumption innovations) is the negative of the

⁷We choose to develop the economic interpretation of the AD Bear returns using Wachter (2013)'s time-varying disaster model because the AD Bear price is the discounted risk-neutral probability that the market is in a bear state at expiration and Wachter (2013) explicitly models the impact of time-variation in the probability of negative jumps. However, AD Bear returns can be similarly interpreted from the perspectives of other models that feature time-varying bear market risk.

⁸All derivations are shown in Appendix A.

coefficient of risk aversion $(-\gamma)$. Intuitively, a positive consumption innovation decreases marginal utility. The sensitivity of the SDF to negative jumps in consumption is $-\gamma Z_t$. Finally, the SDF's sensitivity to bear market risk, captured by the innovations in the intensity of jumps, $dB_{\lambda,t}$, is $b_{\pi,\lambda}$ which is greater than zero since an increase in the intensity of jumps increases marginal utility.

We now examine the market portfolio return. An important observation from Table 1 is that while both the market return and the SDF are sensitive to all three sources of risk, the SDF is not a linear function of the market return. Specifically, the sensitivities of the market return to the continuous consumption innovations (dB_t) and realized jumps (Z_t) are proportional to the corresponding SDF sensitivities, while the market return's sensitivity to innovations in jump intensity $(dB_{\lambda,t})$ is not. This means that in the economy described by Wachter (2013), the CAPM does not hold. The failure of the CAPM is driven by the sensitivity of the market portfolio's return to bear market risk, or innovations in jump risk intensity. To correctly price assets, therefore, one must account for the effect of bear market risk.

Most importantly, Table 1 shows that the sensitivities of the AD Bear portfolio's return to continuous consumption innovations (dB_t) and realized jumps (Z_t) are a simple multiple, $-\Delta$, of the market portfolio return's sensitivities to these risk factors. Therefore, a portfolio that is long one dollar of the AD Bear portfolio and long Δ dollars of the market portfolio has zero exposure to continuous consumption innovations (dB_t) and realized jumps (Z_t) . The returns of this portfolio are exposed only to bear market risk $(dB_{\lambda,t})$.

The economic insights from the above discussions are two-fold. First, in the presence of bear market risk (captured in this model by time-variation in jump intensity), the market risk factor is insufficient to price assets, i.e., the CAPM does not hold. Second, the AD Bear portfolio is proportionally more sensitive than the market portfolio to bear market risk. Therefore, the returns of the AD Bear portfolio hedged with respect to market risk can be used to capture bear market risk and examine its asset pricing implications.

3 AD Bear Portfolio

3.1 Data

We gather data for S&P 500 index options expiring on the third Friday of each month, S&P 500 index levels, S&P 500 index dividend yields, VIX index levels, and risk-free rates for the period from January 4, 1996 through August 31, 2015 from OptionMetrics (OM hereafter).⁹ To ensure data quality, we remove options with bid prices of zero and options that violate simple arbitrage conditions, as indicated by a missing implied volatility in OM. We define the price of an option to be the average of the bid and offer prices and the dollar trading volume to be the number of contracts traded times the option price. The *T*-year S&P 500 index forward price is taken to be $F = S_0 e^{(r-y)T}$ where S_0 is the closing level of the S&P 500 index, *r* is the continuously compounded risk-free rate for maturity *T*, and *y* is the dividend yield of the S&P 500 index.

3.2 Construction of AD Bear

Theoretically, the AD Bear portfolio will generate a payoff of \$1 when the S&P 500 index level at expiration is in a bear state, defined as index levels below some value K_2 , and zero otherwise. Becauses of the discreteness of option strikes, this payoff structure cannot be perfectly replicated using traded options. We therefore approximate the AD Bear portfolio with a portfolio that is long a put option with strike price $K_1 > K_2$ and short a put option strike price K_2 , as shown in Figure 1. The terminal payoff is $K_1 - K_2$ when the index level is below K_2 at option expiration, zero when the index level is above K_1 , and linearly decreasing from $K_1 - K_2$ to zero when the index level is between K_2 and K_1 . To make the terminal payoff equal to one when the index level is below K_2 , we normalize the long and short put positions by $\frac{1}{K_1-K_2}$.

When implementing the AD Bear portfolio, we make several empirical choices that are largely driven by features of the option data. First, for any day d, we create the AD Bear portfolio using one-month options, which are defined as options that expire in the calendar month subsequent to

 $^{^{9}}$ On 1/31/1997 and 11/26/1997, no VIX index level is available. We set the VIX index level on 1/31/1997 to 19.47, its closing value on 1/30/1997. Similarly, we set the VIX index level on 11/26/1997 to 28.95, its closing value on 11/25/1997.

the calendar month in which day d falls. This choice is driven by the fact that one-month options tend to be more liquid than options with longer time to expiration.¹⁰ Second, we choose K_2 to be 1.5 standard deviations below the S&P 500 index forward price. This is equivalent to defining bear market states to be states in which the market excess return is more than 1.5 standard deviations below zero. We choose 1.5 standard deviations based on a trade off between our objective of capturing the pricing effect of severe bear states with the practical consideration that very-far out-of-the-money (OTM) put options are illiquid, making their pricing unreliable and frequently unavailable in the data.¹¹ Third, following Jurek and Stafford (2015), we take the level of the VIX index divided by 100 as our measure of standard deviation.¹² Fourth, we choose K_1 to be one standard deviation below the forward price. Theoretically, we would like to choose K_1 close to K_2 because, as can be seen in Figure 1, the payoff function of the option portfolio converges to the theoretical AD Bear payoff function as $K_1 - K_2$ approaches zero. However, as K_1 approaches K_2 , the difference in the prices of the options approaches zero as well. Since the price of the AD Bear portfolio is simply the difference in the option prices scaled by the difference in strikes, if we choose K_1 very close to K_2 , the informational content of the price difference is frequently overwhelmed by bid-ask spread-induced noise.

We therefore construct the AD Bear option portfolio as follows. Letting T be the time until option expiration, σ be the level of the VIX index divided by 100, and F be the forward price, we define $K(z) = Fe^{z\sigma\sqrt{T}}$ to be the strike price z standard deviations from the forward price and P(z) to be price of the put option with strike K(z). The price of the AD Bear portfolio, $P_{\text{AD Bear}}$, is

$$P_{\rm AD \ Bear} = \frac{P(-1) - P(-1.5)}{K(-1) - K(-1.5)}.$$
(3)

¹⁰The use of one-month options is consistent with previous research (Chang, Christoffersen, and Jacobs (2013), Cremers, Halling, and Weinbaum (2015), Jurek and Stafford (2015)). In unreported tests, we find that our results are robust when using two-month options.

¹¹Our bear region corresponds to approximately the worst 6.7% of market states under the assumption of lognormally distributed returns. In unreported tests, we find that our results are slightly weaker when using one standard deviation below zero as the bear state boundary. The relative weakness is consistent with the market being more concerned about larger losses.

 $^{^{12}}$ In unreported tests, we find that our results are robust when using a constant standard deviation of 20%.

Since options are available for only a discrete set of strikes, we approximate the price of the put option with strike price K(z) as

$$P(z) = \sum_{z' \in [z-0.25, \ z+0.25]} P(z')w(z').$$
(4)

The summation is taken over all traded options with strikes within 0.25 standard deviations of the target strike K(z). The weight w(z') is the ratio of the dollar trading volume of the option with strike price K(z') to the total dollar volume of the options over which the summation is calculated:

$$w(z') = \frac{\$Vol(z')}{\sum_{z' \in [z-0.25, z+0.25]} \$Vol(z')}$$
(5)

where Vol(z') is the dollar trading volume of the option with strike K(z'). Taking the volumeweighted average put price over a range of strikes increases the informativeness of the AD Bear portfolio price by putting more weight on liquid options whose prices are likely to be more reflective of true option value and less subject to noise induced by the bid-ask spread.

3.3 AD Bear Portfolio Returns

Each trading day from January 4, 1996 through August 24, 2015, we create the AD Bear portfolio. We calculate the AD Bear return over the next five-trading days (one calendar week except when there is a holiday). The choice to use a five-day return is based on a trade-off between theory and practical considerations. Our theoretical motivation is based on instantaneous returns, which leads us to use a return period as short as possible. However, bear betas computed using short-term returns may suffer from biases introduced by nonsynchronous trading in the stock and option markets (Scholes and Williams (1977), Dimson (1979)). Using five-day returns is a reasonable balance between these two considerations.

The five-day excess return of the AD Bear portfolio formed five trading days prior to day d, which we denote $R_{AD Bear,d}$, is given by

$$R_{\text{AD Bear},d} = \frac{P_{\text{AD Bear},d}}{P_{\text{AD Bear},d-5}} - R_{f,d}$$
(6)

where $P_{\text{AD Bear},d}$ and $P_{\text{AD Bear},d-5}$ are the day d and d-5 prices, respectively, of the AD Bear portfolio formed at the close of day d-5, and $R_{f,d}$ is the five trading day compounded gross return on the risk-free security from the close of day d-5 to the close of day d.¹³ The result is a time-series of overlapping five-day AD Bear portfolio excess returns for the period from January 11, 1996 through August 31, 2015.¹⁴

Table 2 presents summary statistics for the daily five-day overlapping excess returns of the AD Bear portfolio. The first row presents results for the unscaled AD Bear returns. AD Bear generates an average excess return of -8.12% per five-day period, with a standard deviation of 74.72%. The large magnitude of the AD Bear excess returns reflects the leverage embedded in options. To facilitate comparison with other factors, for the remainder of this paper, we scale the AD Bear excess returns is equal to that of the market excess returns. The row labeled "AD Bear" presents summary statistics for the scaled AD Bear portfolio excess returns. The AD Bear portfolio generates a scaled average excess return of -0.28% per five-day period with a standard deviation of 2.59.¹⁵ The distribution of AD Bear excess returns exhibits large positive skewness of 2.81.

The remainder of Table 2 presents, for comparison, summary statistics for the daily five-day excess returns of the market (MKT) factor, the size (SMB) and value (HML) factors of Fama and French (1993), the momentum (MOM) factor of Carhart (1997), the size (ME), profitability (ROE), and investment (IA) factors from the Q-factor model of Hou et al. (2015), and the size (SMB₅), profitability (RMW), and investment (CMA) factors from the five-factor model of Fama and French (2015).¹⁶ The mean five-day excess returns of the factors range from 0.04% for the SMB factor to

¹³Daily risk-free security return data are gathered from Kenneth French's data library.

 $^{^{14}}$ If insufficient data are available to calculate the AD Bear return (see Jurek and Stafford (2015)), we consider the return for the given five-day period to be missing. Since AD Bear has a non-negative payoff structure, we also require that entering into a long (short) position in the AD Bear portfolio by trading at the quoted bid and offer would result in a positive cash outflow (inflow). Imposing these screens results in valid returns for 4910 out of 4944 days during the sample period.

¹⁵There is a literature examining the large negative returns of OTM S&P 500 index put options (Coval and Shumway (2001), Jackwerth (2000), Broadie, Chernov, and Johannes (2009), and Bondarenko (2014)). Since the AD Bear portfolio has both long and short positions in OTM S&P 500 index put options, it is unclear ex-ante from these previous results whether the average excess return of AD Bear should be positive or negative.

¹⁶MKT, SMB, HML, MOM, SMB₅, RMW, and CMA factor return data are gathered from Kenneth French's data library. We thank Lu Zhang for providing the ME, ROE, and IA factor returns. The five-day excess factor returns are calculated as the daily factor gross return, compounded over the given five day period, minus the five-day gross compounded return of the risk-free security.

0.15% for the MKT factor.

3.4 Factor Analysis of AD Bear Returns

We begin the empirical investigation of our main hypothesis by examining whether the average returns of the AD Bear portfolio can be explained by exposures to standard risk factors. We measure the risk exposures by regressing five-day AD Bear excess returns, $R_{AD Bear,t}$, on risk factor returns, \mathbf{F}_{t} . The regression specification is

$$R_{\rm AD \; Bear.t} = \alpha + \beta' \mathbf{F_t} + \epsilon_t. \tag{7}$$

The standard risk factors we use are returns of zero-investment portfolios. The average returns of these portfolios capture the factor risk premia. Therefore, α in regression (7) measures the average return of the AD Bear portfolio that is not compensation for exposure to the risk factors considered. AD Bear has positive exposure to bear market risk and bear market risk is predicted to carry a negative premium. If bear market risk is distinct from previously identified factors, then AD Bear should generate negative alpha relative to standard factor models.

Before proceeding to the factor model analyses, we first examine whether the average AD Bear excess return is statistically distinguishable from zero. Table 3 shows that the average AD Bear excess return of -0.28% per five-day period is highly significant with a Newey and West (1987, NW hereafter)-adjusted *t*-statistic of -3.60. Our first factor analysis in Table 3 examines whether the premium earned by the AD Bear portfolio can be explained by exposure to CAPM market risk. Consistent with the prediction from the model derived in Section 2, despite AD Bear's strong negative exposure to the market factor ($\beta_{CAPM} = -0.81$), the average AD Bear excess return cannot be fully explained by market factor exposure. AD Bear's alpha relative to the CAPM model is -0.15% per five days, highly significant with a *t*-statistic of -3.83. This is our first indication of a negative price of bear market risk.

While the CAPM regression demonstrates that the negative premium generated by AD Bear is not completely explained by market risk, it is possible that some combination of previously established factors captures bear market risk. We therefore test whether AD Bear's CAPM alpha can be explained by risk factor models proposed by Fama and French (1993), Carhart (1997), Hou et al. (2015), and Fama and French (2015). Table 3 shows that these factor models cannot explain the AD Bear excess returns. AD Bear produces alpha of -0.16% per five day period (*t*-statistic = -3.85) relative to the Fama and French (1993) model (FF3) that includes MKT, SMB, and HML and alpha of -0.14% per five day period (*t*-statistic of -3.23) relative to the four-factor model of Fama and French (1993) and Carhart (1997) (FFC) that includes MKT, SMB, HML, and MOM. AD Bear's alpha relative to the Q-factor model of Hou et al. (2015) (Q) that includes MKT, ME, ROE, and IA is -0.13% per five day period (*t*-statistic of -3.09). Finally, AD Bear generates alpha of -0.13% (*t*-statistic = -2.97) per five-day period relative to the Fama and French (2015) five-factor model (FF5), which includes MKT, SMB₅, HML, RMW, and CMA. Augmenting the CAPM with additional factors produces negligible changes in R^2 . Approximately 35% of the total variation in AD Bear excess returns cannot be explained by these risk factors.

3.5 Hedged AD Bear Returns

In Section 2 we demonstrated theoretically that the excess return of the AD Bear portfolio hedged with respect to the market factor (hedged AD Bear portfolio) is highly responsive to bear market risk. The intercept plus the residual from the CAPM regression in Table 3 can be interpreted as the return of this hedged portfolio. Large residuals should thus coincide with economic events affecting investors' forward-looking assessment of future bear market states occur.¹⁷ In Figure 2, we plot the time-series of residuals from the CAPM regression and indicate the five largest residuals with the numbers 1-5. The largest residual of 34.62% occurs during the five-trading day period between the end of February 26, 2007 and the end of March 5 2007. During this period, the Chinese stock market crashed – the SSE Composite Index of the Shanghai Stock Exchange experienced a 9% drop on Feb 27, 2007, the largest in 10 years.¹⁸ The second largest residual of 16.8% comes on 5/6/2010 (formation date 4/29/2010). This period coincides with the 2010 Flash Crash and the opening of the criminal investigation of Goldman Sachs related to security fraud in

¹⁷Since we use the CAPM as the benchmark model, economic events that induce large negative market returns would not be captured by our hedged AD Bear return, which is orthogonalized to the market factor.

¹⁸Quote from Wall Street Journal, Page C4, Today's Market: "Investor fear that pressured stocks also spilled into bond markets... the Dow Jones Industrial Average finished 416.02 points, or 3.3%, lower as part of a global sell-off that began with a pullback in China's red-hot stock market."

mortgage trading.¹⁹ The third largest residual occurs between 5/31/2011 and 6/7/2011, a period characterized by a series of bad economics news. Moody's cut Greece's credit rating by three notches to an extremely speculative level. Both the ISM manufacturing report and the private sector employment report came in well below economists' expectations. The fourth largest residual (8/18/2015 through 8/25/2015) corresponds to the Chinese stock market's "Black Monday" when the Shanghai Composite Index tumbled 8.5%, the biggest loss since February 2007. Finally, the fifth largest residual occurs between 12/29/2014 and 1/6/2015, when the price of oil fell below \$50 a barrel for the first time in nearly six years and Greece's Snap Election renewed political turmoil. Notably, market returns during these five periods are only moderately negative. Therefore, the largest hedged AD Bear returns appear to be associated with important negative economic events, but these events are different from events that drive the largest negative market returns.

In summary, Table 3 demonstrates that AD Bear returns have a component that is orthogonal to the market risk factor (and other commonly used risk factors) and that this orthogonal component earns a negative and highly statistically significant average premium. Figure 2 shows that large spikes in the hedged AD Bear return correspond to news events that plausibly result in an increase in the market's assessment of the prospects of a future bear market state. We caution against relying on these results to conclude that bear market risk is a priced risk factor. The AD Bear portfolio is constructed from out-of-the-money put options that have wide bid-ask spreads. Trading the AD Bear portfolio by buying at the ask price and selling at the bid price would incur transaction costs that are an order of magnitude larger than the average AD Bear return. We therefore interpret the AD Bear returns simply as indicative of bear market risk and proceed to test our main hypothesis, that bear market risk has a negative price of risk, by examining the cross-sectional relation between bear market risk exposure and expected stock returns.

4 Bear Beta and Expected Stock Returns

If the negative alpha of the AD Bear portfolio is due to exposure to bear market risk, stock-level

¹⁹Quotes from Wall Street Journal, Page C4, Today's Market: "A bad day in the financial markets was made worse by an apparent trading glitch, leaving traders and investors nervous and scratching their heads over how a mistake could send the Dow Jones Industrial Average into a 1,000 point tailspin." "Stocks tumbled Friday, capping the worst week since January, as news that Goldman Sachs Group is now the subject of a criminal probe prompted investors to sell financial shares."

sensitivity to the hedged AD Bear returns should exhibit a negative cross-sectional relation with expected stock returns. In this section, we test this hypothesis.

4.1 Bear Beta

For each stock i at the end of each month t, we run a time-series regression of excess stock returns on the excess market return (MKT) and the scaled excess return of the AD Bear portfolio. The regression specification is

$$R_{i,d} = \beta_0 + \beta_i^{\text{MKT}} \text{MKT}_d + \beta_i^{\text{BEAR}} R_{\text{AD Bear},d} + \epsilon_{i,d}$$
(8)

where $R_{i,d}$ is the excess return of stock *i* over the the five-trading-day period ending at the close of day *d*, MKT_d is the contemporaneous market excess return, and $R_{AD Bear,d}$ is the contemporaneous AD Bear excess return.²⁰ The regression uses overlapping returns for five-day periods ending in months t - 11 through *t*, inclusive. We require at least 183 valid observations to estimate the regression, meaning the regression has at least 180 degrees of freedom. To minimize the estimation errors associated with the rolling-window regressions, we follow Fama and French (1997) and adjust the OLS coefficient using a Bayes shrinkage method. We use the shrinkage-adjusted value, which we denote β^{BEAR} , in our empirical analyses. The details are provided in Appendix B.

4.2 Samples

We use three different samples, which we term the All Stocks, Liquid, and Large Cap samples, in our examination of the relation between bear beta and expected stock returns. Each month t, the All Stocks sample consists of all U.S.-based common stocks in the CRSP database that have a valid month t value of β^{BEAR} . The Liquid sample is the subset of the All Stocks sample with Amihud (2002) illiquidity (ILLIQ) values that are less than or equal to the 80th percentile month tILLIQ value among NYSE stocks.²¹ Finally, the Large Cap sample is the subset of the All Stocks

²⁰The AD Bear portfolio is formed at the close of trading day d-5 and held until the close of day d. All returns are calculated over this same period. When calculating five-day excess stock returns $(R_{i,d})$, we require that a return from each of the five days be available.

²¹ILLIQ is calcuated following Amihud (2002) as the absolute daily return measured in percent divided by the daily dollar trading volume in \$millions, averaged over all days in months t - 11 through t, inclusive.

sample with market capitalization (MKTCAP) values that are greater than or equal to the 50th percentile value of MKTCAP among NYSE stocks.²² We use the Liquid and Large Cap samples to distinguish between risk pricing and mispricing explanations for our results. Our samples cover the months t (one-month-ahead return months t+1) from December 1996 (January 1997) through August 2015 (September 2015). This period is chosen because December 1996 and August 2015 are the first and last months for which β^{BEAR} can be estimated on a full year's worth of data due to the availability of the OM data.

Table 4 presents the time-series averages of monthly cross-sectional summary statistics for β^{BEAR} , MKTCAP, and ILLIQ. In the average month, All Stock sample values of β^{BEAR} range from -1.67 to 2.05, with mean (0.06) and median (0.05) values that are very close to zero and a standard deviation of 0.40. The distribution of β^{BEAR} has a small positive skewness of 0.23. The mean (median) MKTCAP of stocks in the All Stocks sample is \$3.2 billion (\$308 million), and the mean (median) value of ILLIQ is 198 (4.75). The All Stocks sample has, on average, 4787 stocks per month. The distributions of β^{BEAR} in the Liquid and Large Cap samples are similar to that of the All Stocks sample. As expected, the Liquid sample has larger and more liquid stocks than the All Stocks sample, and Large Cap sample stocks are larger and more liquid than Liquid sample stocks. The Liquid (Large Cap) sample has 2041 (1005) stocks in the average month.

4.3 β^{BEAR} -Sorted Portfolios

4.3.1 Post-formation Portfolio Returns

We begin our examination of the relation between bear beta and expected stock returns with a univariate portfolio analysis using β^{BEAR} as the sort variable. At the end of each month t, all stocks in the given sample are sorted into decile portfolios based on an ascending ordering of β^{BEAR} . We then calculate the value-weighted average month t+1 excess return for each of the decile portfolios, as well as for the zero-investment portfolio that is long the β^{BEAR} decile 10 portfolio and short the

 $^{^{22}}$ MKTCAP is the number of shares outstanding times the stock price, recorded at the end of month t in \$millions.

 β^{BEAR} decile one portfolio (β^{BEAR} 10 – 1 portfolio).²³

Panel A of Table 5 shows that for the All Stocks sample, average excess returns are nearly monotonically decreasing across β^{BEAR} deciles. The β^{BEAR} decile one portfolio generates an average excess return of 0.99% per month and the average excess return of the 10th decile portfolio is -0.14%per month. The β^{BEAR} 10 - 1 portfolio average return of -1.13% per month is economically large and highly statistically significant with a NW t-statistic of -2.67. To examine whether the pattern in the excess returns of the β^{BEAR} -sorted portfolios is a manifestation of exposure to previously identified risk factors, we calculate the abnormal returns of the decile portfolios relative to the CAPM, FF3, FFC, Q and FF5 factor models. The results demonstrate that standard risk factors do not explain the relation between β^{BEAR} and average returns since the alphas exhibit a similar monotonically decreasing pattern across β^{BEAR} deciles and the alpha of the β^{BEAR} 10 - 1 portfolio relative to each of the factor models is negative and statistically significant. The β^{BEAR} 10 - 1 portfolio generates monthly alpha of -1.48% per month (t-statistic = -3.59), -1.33% (t-statistic = -3.92), -1.25% (t-statistic = -3.38), -0.84% (t-statistic = -2.41), and -0.71% (t-statistic = -2.29) relative to the CAPM, FF3, FFC, Q, and FF5 factor models, respectively.

4.3.2 Post-formation Factor Loadings

Theoretically, a factor model indicates contemporaneous relations between the true factor loading and expected returns. Our empirical tests have used a pre-formation measure of bear beta (β^{BEAR}) calculated at the end of month t to predict returns in month t + 1 and implicitly assumed that this pre-formation β^{BEAR} is indicative of the month t + 1 stock-level sensitivity to bear market risk. To interpret the results of our empirical analyses as supportive of a risk-based explanation, it is necessary that our portfolios exhibit dispersion in post-formation exposure to bear market risk.

²³The excess return in month t + 1 is defined as the delisting-adjusted (Shumway (1997)) stock return minus the return of the one-month U.S. Treasury bill in month t + 1, recorded in percent. If the stock is delisted in month t + 1, if a delisting return is provided by CRSP, we take the month t + 1 return of the stock to be the delisting return. If no delisting return is available, then we determine the stock's return based on the delisting code in CRSP. If the delisting code is 500 (reason unavailable), 520 (went to OTC), 551-573 or 580 (various reasons), 574 (bankruptcy), or 584 (does not meet exchange financial guidelines), we take the stock's return during the delisting month to be -30%. If the delisting code has a value other than the previously mentioned values and there is no delisting return, we take the stock's return during the delisting return, we take the stock's return during the delisting return, we take the stock's return during the delisting return.

To test whether this is the case, we calculate the post-formation sensitivities of the decile portfolio returns to the AD Bear returns by regressing the entire time-series of post-formation overlapping five-day excess returns of the β^{BEAR} decile portfolios on the contemporaneous AD Bear excess return and MKT, as in equation (8).²⁴

For sake of comparison, Table 5 presents value-weighted average value of (pre-formation) β^{BEAR} for each of the decile portfolios. By construction, the value-weighted pre-formation values of β^{BEAR} increase from -0.58 for the first β^{BEAR} decile portfolio to 0.78 for β^{BEAR} decile portfolio 10. In support of a risk factor based interpretation of the cross-sectional pattern in returns, the results in Table 5 indicate that the β^{BEAR} 10 – 1 portfolio has a strong positive post-formation AD Bear sensitivity of 0.21 (*t*-statistic = 2.83). While pre-formation β^{BEAR} is an imperfect measure of the true forward-looking factor loading, it is sufficiently accurate to generate economically and statistically significant post-formation exposure to AD Bear returns. To our knowledge, this is the first paper to identify a factor not based on stock returns that successfully generates significant spreads in both the post-formation returns and post-formation factor loadings among stock portfolios sorted on pre-formation factor sensitivities.

4.3.3 Subsample Analysis

If the negative cross-sectional relation between β^{BEAR} and future stock returns is truly indicative of a risk pricing effect, we expect that the effect remains strong in liquid and large stocks. On the other hand, if the negative relation between β^{BEAR} and future stock returns captures mispricing, we would expect the relation to be weak or non-existent among liquid and large stocks where limits to arbitrage (Shleifer and Vishny (1997)) are unlikely to bind. To distinguish between the risk pricing and mispricing explanations, we repeat the portfolio tests using our Liquid and Large Cap samples.

Results for the Liquid sample, shown in Panel B of Table 5, are very similar to those of the All Stocks sample. The Liquid sample average portfolio excess returns decrease strongly across β^{BEAR} decides. The β^{BEAR} 10 – 1 portfolio generates an economically large and highly statistically

 $^{^{24}\}mathrm{The}$ portfolios are still rebalanced at the end of each month t .

significant average return of -1.08% per month (t-statistic = -2.41), with alphas ranging from -1.48% per month (t-statistic = -3.48) using the CAPM model to -0.70% per month (t-statistic = -2.39) using the FF5 model. The Liquid sample β^{BEAR} 10 – 1 portfolio has a post-formation sensitivity of 0.22 (t-statistic = 2.81) to AD Bear excess returns, indicating that the portfolio sort is effective at generating assets with strong variation in post-formation exposure to bear market risk.

The Large Cap sample results in Table 5 Panel C are once again similar to those of the other two samples. The portfolio excess returns and alphas exhibit a strong decreasing pattern across β^{BEAR} deciles. The β^{BEAR} 10 – 1 portfolio generates economically large and highly statistically significant negative alpha relative to all factor models, ranging from -1.33% per month (*t*-statistic = -3.21) using the CAPM model to -0.55% per month (*t*-statistic = -2.17) using the FF5 model. Once again, supportive of a risk-based explanation for the pattern in returns, the β^{BEAR} 10 – 1 portfolio exhibits a strong positive post-formation sensitivity to the AD Bear excess returns.

5 Robustness

5.1 Bivariate Portfolio Analyses

Having demonstrated a strong negative cross-sectional relation between bear beta and expected stock returns that is not explained by standard risk factors, we proceed to investigate the possibility that this relation can be explained by risks not captured by the standard risk factors. Table 6 shows average values of several risk variables across the *univariate* β^{BEAR} decile portfolios.²⁵ We use each of these risk variables as controls and test the robustness of our univariate β^{BEAR} portfolio results by constructing bivariate portfolios that are neutral to a control variable while having variation in β^{BEAR} . Specifically, at the end of each month t, we sort all stocks into ascending control variable deciles. Within each control variable decile, we sort stocks into decile portfolios based on an ascending ordering of β^{BEAR} . We then calculate the value-weighted month t + 1 excess return for each of the resulting portfolios. Next, we compute the average month t + 1 excess return across the control variable decile portfolios within each β^{BEAR} decile, and refer to this as the bivariate

²⁵We describe each risk variable as we discuss the corresponding results. More detailed descriptions of the control variables are provided in Section I of the online appendix.

 β^{BEAR} decile portfolio excess return. Finally, we calculate the difference in month t + 1 returns between the bivariate β^{BEAR} decile 10 and decile one portfolios (β^{BEAR} 10 – 1 portfolio). Since the bivariate β^{BEAR} decile portfolios have similar exposure to the control variable, any return pattern across the bivariate β^{BEAR} decile portfolios is unlikely to be driven by the control variable. The results of the bivariate portfolio analyses are shown in Table 7.

We first control for CAPM beta (β^{CAPM}), measured as the the slope coefficient from a oneyear rolling window regression of daily excess stock returns on MKT. Table 6 shows that, in all three samples, average β^{CAPM} increases across the *univariate* β^{BEAR} decile portfolios. Frazini and Pedersen (2014) show that high (low) CAPM beta stocks generate negative (positive) alphas under standard risk factor models. We thus test whether our results can be explained by the "betting-against-beta" effect. Table 7 shows that, controlling for β^{CAPM} , the CAPM alpha of the bivariate β^{BEAR} 10 – 1 portfolio is less negative than that of the univariate β^{BEAR} 10 – 1 portfolio, -0.79% per month vs. -1.48% per month in the All Stocks sample. Nevertheless, the CAPM alpha of the bivariate β^{BEAR} 10 – 1 portfolio is still large and highly statistically significant (*t*-statistic = -3.20). Furthermore, we observe alphas ranging from -0.55% to -0.74% per month with *t*statistics between -2.32 and -3.13 for the bivariate β^{BEAR} 10 – 1 portfolio when we benchmark against FF3, FFC, Q, and FF5 models. Restricting the sample to liquid or large cap stocks yields even stronger results. Therefore, controlling for CAPM beta does not explain the negative relation between bear beta and expected returns.

We then investigate whether downside beta studied in Ang, Chen, and Xing (2006) can explain the negative relation between bear beta and expected stock returns. Ang, Chen, and Xing (2006) find a positive relation between average stock returns and downside beta (β^-), measured as the slope coefficient from a one-year rolling window regression of daily excess stock returns on MKT using only below-average MKT days. As discussed in the introduction and in Section 2, while both β^- and β^{BEAR} are measures of downside risks, they capture economically different sources of risk: β^- measures the covariance between the stock return and the market return when a bear state occurs, whereas β^{BEAR} measures the covariance between the stock return and the innovation in the probability of *future* bear states. Since β^- is strongly correlated with CAPM market beta, to control for market risk, Ang, Chen, and Xing (2006) compute relative downside beta, $\beta^{-} - \beta^{\text{CAPM}}$, and show that this measure is also positively related to expected stock returns.²⁶ Our β^{BEAR} is more comparable to $\beta^- - \beta^{\text{CAPM}}$ than β^- because, by including the market factor in the time-series regression used to compute β^{BEAR} , we effectively control for exposure to market risk. Consistent with this intuition, Table 6 indicates that the cross-sectional relation between β^{BEAR} and β^{-} is similar to that between β^{BEAR} and β^{CAPM} , likely due to the strong correlation between β^{-} and β^{CAPM} . Once we control for market risk by subtracting CAPM beta from downside beta, we find a negative cross-sectional relation between β^{BEAR} and $\beta^- - \beta^{\text{CAPM}}$, suggesting that there is overlap between stocks that lose value when bear market risk increases and stocks that comove more with the market when the market is down. It is therefore plausible that low β^{BEAR} stocks have higher average returns because they have, on average, higher $\beta^- - \beta^{\text{CAPM}}$. However, Table 7 shows that controlling for either β^- or $\beta^- - \beta^{\text{CAPM}}$ cannot explain the negative relation between β^{BEAR} and future stock returns. Specifically, controling for β^- yields β^{BEAR} 10 – 1 return spreads between -0.77% and -0.43% per month across the three samples, all of which are statistically significant at the 5% level. Controlling for $\beta^- - \beta^{\text{CAPM}}$ yields even more negative $\beta^{\text{BEAR}} 10 - 1$ monthly return spreads of -0.97% (*t*-statistic = -2.55), -0.93% (*t*-statistic = -2.43), and -0.81% (*t*-statistic = -2.09) in the All Stocks, Liquid, and Large Cap samples, respectively. In all cases, the alphas relative to each of the factor models remain negative, economically large, and highly statistically significant.

Our next tests examine whether systematic volatility or jump risk can explain the negative relation between bear beta and expected stock returns. Ang et al. (2006) find that expected stock returns are negatively related to VIX beta ($\beta^{\Delta \text{VIX}}$), measured as the slope coefficient on the change in the VIX index from a one-month rolling window regression of daily excess stock returns on MKT and VIX changes. Cremers, Halling, and Weinbaum (2015) argue that changes in VIX capture a combination of changes in aggregate volatility risk (VOL) and changes in aggregate jump risk (JUMP) and design option portfolios to capture each of these risks. They find that stock-level sensitivities to both VOL (β^{VOL}) and JUMP (β^{JUMP}), each of which is measured as the sum of the

²⁶In unreported results, we confirm Ang, Chen, and Xing (2006)'s finding that the correlation between β^- and β^{CAPM} is above 0.7.

coefficients on contemporaneous and lagged JUMP or VOL factor returns from a one-year rolling window regression of excess stock returns, are both negatively related to expected stock returns.²⁷ Since the AD Bear portfolio has positive vega (volatility) and gamma (jump) exposure, we expect a positive cross-sectional relation between β^{BEAR} and each of $\beta^{\Delta \text{VIX}}$, β^{VOL} , and β^{JUMP} . Table 6 shows that this is indeed the case, making it plausible that $\beta^{\Delta \text{VIX}}$, β^{VOL} , or β^{JUMP} explains the negative relation between future stock returns and β^{BEAR} . Nevertheless, Table 7 provides little evidence that any of these risk measures fully captures the pricing effect of β^{BEAR} , since the average returns and alphas of the bivariate β^{BEAR} 10 – 1 portfolios in all three samples are all greater in magnitude than -0.52% per month and statistically significant at the 5% level.

We then examine two measures of systematic skewness risk. While skewness does not explicitly differentiate between upside and downside risk, it is possible that skewness risk is mostly driven by the left tail of the distribution of the market return. The first measure is coskewness (COSKEW), measured as the slope coefficient on MKT² from a 60-month rolling window regression of monthly excess stock returns on MKT and MKT², which is shown by Harvey and Siddique (2000) to be negatively related to expected stock returns. Table 6 documents a positive cross-sectional relation between COSKEW and β^{BEAR} , suggesting that COSKEW may potentially capture the β^{BEAR} effect. However, the results of the bivariate portfolio analysis show that controlling for COSKEW does not explain the negative average excess return or alphas of the β^{BEAR} 10 – 1 portfolio. The second measure is skewness beta ($\beta^{\Delta \text{SKEW}}$) proposed in Chang et al. (2013), calculated as the slope coefficient on innovations in aggregate risk-neutral skewness (Δ SKEW) from a regression of daily excess stock returns on daily values of MKT, aggregate volatility changes, Δ SKEW, and aggregate kurtosis innovations, is negatively related to expected stock returns.²⁸ However, Table 6 shows that average values of $\beta^{\Delta \text{SKEW}}$ tend to be lower for the high β^{BEAR} deciles, suggesting that controlling

²⁷We thank Martijn Cremers, Michael Halling, and David Weinbaum for providing us with daily JUMP and VOL factor returns. The JUMP and VOL factor data end on March 31, 2012. Thus, analyses using β^{JUMP} or β^{VOL} cover months t (return months t + 1) from December 1996 (January 1997) through March 2012 (April 2012).

²⁸We thank Bo Young Chang, Peter Christoffersen, and Kris Jacobs for providing the Δ VOL, Δ SKEW, and Δ KURT factor data. The Δ VOL, Δ SKEW, and Δ KURT data end on December 31, 2007. Thus, analyses using β^{Δ SKEW} cover months t (return months t+1) from December 1996 (January 1997) through December 2007 (January 2008). We use the skewness beta computed based on one-month multivariate regression because it exhibits the strongest predictive power among the four skewness betas reported in Table 3 of Chang, Christoffersen, and Jacobs (2013).

for $\beta^{\Delta \text{SKEW}}$ is unlikely to explain negative cross-sectional relation between β^{BEAR} and future stock returns. Indeed, the bivariate portfolio results in Table 7 show that the average excess return and alphas of the bivariate β^{BEAR} 10–1 portfolio constructed to be neutral to $\beta^{\Delta \text{SKEW}}$ remain negative, large in magnitude, and highly statistically significant.

Finally, we control for two risk measures that are computed directly from individual stock returns. First, Kelly and Jiang (2014) measure tail risk by aggregating large daily losses on individual stocks and calculate tail beta (β^{TAIL}) by regressing stock returns on lagged tail risk. We find that average values of β^{TAIL} do not exhibit a strong pattern across the deciles of β^{BEAR} (Table 6).²⁹ The results of the bivariate portfolio analyses in Table 7 show that after controlling for β^{TAIL} , the β^{BEAR} 10 – 1 portfolio still generates economically large, negative, and highly statistically significant average excess returns and alphas. Second, Ang et al. (2006) find that idiosyncratic volatility (IVOL), calculated as the standard deviation of the residuals from a one-month rolling window regression of daily excess stock returns on MKT, SMB, and HML, is negatively related to the cross-section of future stock returns. Table 6 shows that average values of IVOL do not exhibit a strong cross-sectional relation with β^{BEAR} and, not surprisingly therefore, the bivariate portfolio analysis results in Table 7 show that controlling for IVOL cannot explain the negative relation between β^{BEAR} and future stock returns.

5.2 Fama-MacBeth Regression Analyses

Bivariate portfolio analysis allows us to control for the effect of one variable at a time when examining the relation between bear beta and expected stock returns. To control for multiple potentially confounding effects simultaneously, we use Fama and MacBeth (1973, FM hereafter) regression analyses. Each month t, we run the following cross-sectional regression:

$$R_{i,t+1} = \lambda_{0,t} + \lambda_{1,t}\beta_{i,t}^{\text{BEAR}} + \mathbf{\Lambda}_{\mathbf{t}}\mathbf{X}_{\mathbf{i},\mathbf{t}} + \epsilon_{i,t}$$
(9)

where $R_{i,t+1}$ is stock *i*'s month t+1 excess return, $\beta_{i,t}^{\text{BEAR}}$ is stock *i*'s month *t* value of β^{BEAR} , and

 $^{^{29}\}beta^{\text{TAIL}}$ and β^{BEAR} are very different measures. β^{TAIL} is measured using lead-lag regressions of excess stock returns on a tail risk measure based on individual stocks returns whereas β^{BEAR} captures contemporaneous covariance between excess stock returns excess AD Bear returns.

 $\mathbf{X}_{i,t}$ is a vector of control variables for stock *i* measured at the end of month *t*. All independent variables are winsorized at the 0.5 and 99.5% levels on a monthly basis. Our main hypothesis predicts that stocks with higher bear betas earn lower average returns and thus the average regression coefficient on β^{BEAR} should be negative.³⁰ If the pricing effect of bear beta is distinct from the phenomena captured by the control variables, the coefficient on β^{BEAR} should remain negative when controls are included in the regression specification. Table 8 presents the time-series averages of the monthly cross-sectional regression coefficients along with NW-adjusted *t*-statistics testing the null hypothesis that the time-series average is equal to zero.

We begin with two baseline specifications. Specification (1) has β^{BEAR} as the only independent variable. The average coefficient on β^{BEAR} is -0.46 (t-statistic = -2.27), -0.68 (t-statistic = -2.54), and -0.83 (t-statistic = -2.71) in the All Stocks, Liquid, and Large Cap sample, respectively, each of which is negative and statistically significant. This is consistent with the univariate portfolio results and indicates a strong negative relation between bear beta and expected stock returns. We next control for exposure to CAPM market risk by including β^{CAPM} as the second independent variable (specification (2)). This specification is comparable to the bivariate portfolio analysis that controls for β^{CAPM} . Table 8 shows that, although the average coefficient on β^{BEAR} is slightly lower (compared to the univariate specification) when controlling for β^{CAPM} , it remains negative and highly statistically significant in all three samples. As was the case when using bivariate portfolio analysis, the FM regression analysis indicates that the negative cross-sectional relation between β^{BEAR} and future stock returns is not explained by exposure to market risk.

The remaining regression specifications augment specification (2) by including additional controls. We add β^- in specification (3), $\beta^{\Delta \text{VIX}}$ in specification (4), β^{JUMP} and β^{VOL} in specification (5), COSKEW in specification (6), $\beta^{\Delta \text{SKEW}}$ in specification (7), β^{TAIL} in specification (8), and IVOL in specification (9). In each of these specifications, the average coefficient on β^{BEAR} remains negative and statistically significant at the 5% level in all three samples, with the only exception

³⁰ Because β^{BEAR} is an imperfect estimate of a stock's exposure to bear market risk, the usual errors-in-variables concern applies. This biases our coefficients towards zero and against us finding significant results.

being specification (7) in the All Stocks sample, which produces an average coefficient on β^{BEAR} that is negative and significant at the 10% level.³¹ In all specifications other than specification (9) that includes IVOL, the coefficients on the control variables are not statistically significant.

We next control simultaneously for all of the risk variables that are available for the entire sample period (β^{CAPM} , β^- , $\beta^{\Delta \text{VIX}}$, COSKEW, β^{TAIL} , and IVOL) in specification (10). Table 8 shows that, with all risk variables included as controls, the average coefficient on β^{BEAR} remains negative and highly statistically significant in all three samples. Consistent with the bivariate portfolio analyses, the FM regression results provide no evidence that other risk variables explain the negative relation between β^{BEAR} and future stock returns.

Finally, in specification (11), we also control for firm-level characteristics that have previously been shown to be related to expected stock returns. Specifically, we add SIZE (log of MKTCAP), the log of the book-to-market ratio (BM), momentum (MOM), illiquidity (ILLIQ), profitability (Y), and investment (INV) as additional control variables.³² In our portfolio analyses, we controlled for the impact of size, value, momentum, profitability, and investment on expected stock returns by adjusting the portfolio returns for exposures to corresponding factors. Our use of the Liquid and Large Cap samples in the portfolio analyses controls for the liquidity effect. It is therefore not surprising that adding the additional characteristic controls to the regression specification does not explain the negative relation between bear beta and expected stock returns. In specification (11), which includes the full set of controls, the average coefficient on β^{BEAR} is -0.32 (t-statistic = -3.08), -0.33 (t-statistic = -2.43), and -0.45 (t-statistic = -2.25) in the All Stocks, Liquid, and Large Cap sample, respectively, each of which remains highly significant.³³

The main takeaway from the results in Table 8 is clear. There is a strong negative cross-

³¹The decreased statistical significance is likely because values of $\beta^{\Delta \text{SKEW}}$ are only available for the 133 months from December 1996 through December 2007, thus limiting the power of the test. In the Liquid and Large Cap samples, the limited of power of the test is overcome by a more negative average coefficient, resulting in *t*-statistics greater than 2.00 in magnitude.

³²BM is calculated following Fama and French (1992). MOM is the 11-month stock return in months t-11 through t-1 inclusive (skipping month t). Y and INV are calculated following Fama and French (2015).

³³Consistent with previous research, our regressions detect a negative (positive) relation between future stock returns and each of SIZE and INV (ILLIQ, only in the All Stocks sample). The average coefficients on BM, MOM, and Y are insignificant in our sample period. In the online appendix, we repeat the FM regression analyses using β^{BEAR} without the Bayesian adjustment. As expected, we find weaker results for the univariate regressions. When all controls are included, as in specifications (10) and (11), the coefficient on unadjusted β^{BEAR} is negative and statistically significant in all three samples.

sectional relation between bear beta and expected stock returns. This relation is not explained by other variables known to predict the cross-section of expected stock returns.

5.3 Predictive Power Beyond One Month

Our final set of tests examines whether β^{BEAR} can predict stock returns beyond the one-month horizon. If the negative relation between β^{BEAR} and future stock returns does indeed reflect a riskbased phenomenon, we expect the pricing effect to exist beyond the one-month horizon used in our previous tests. Furthermore, the persistence of the cross-sectional relation is important for large institutional investors who may require extended periods after calculating bear beta to accumlate large stock positions. We therefore repeat the FM regression analyses with the same 11 sets of independent variables that were used in Table 8, this time using excess stock returns in month t + k, for $k \in \{2, 3, 4, 5, 6\}$, as the dependent variable.

Table 9 presents the average coefficients on β^{BEAR} from these regressions (to save space, we do not report intercept or control variable coefficients). The univariate regressions (specification (1)) show that the relation between β^{BEAR} and future stock returns remains negative and statistically significant when using 2- to 6-month ahead excess returns across all three samples. Adding control variables has little impact on the results. When all risk variables are included as independent variables in specification (10), the average coefficients on β^{BEAR} remain significant at the 5% level for all forecasting horizons across the three samples. When all risk variables and characteristics are included (specification (11)), we find the average coefficients on β^{BEAR} remain negative and significant at the 5% level in all cases except when using month t + 6 excess returns in the Liquid sample (t-statistic = -1.92) and month t + 4 excess returns in the Large Cap sample (t-statistic = -1.89), both of which are significant at the 10% level. The results indicate that the negative cross-sectional relation between β^{BEAR} and future stock returns is strong for at least six months into the future.³⁴

³⁴We start to find insignificant coefficients on β^{BEAR} in some specifications when excess returns more than six months in the future are used as the dependent variable.

6 Conclusion

In summary, we examine the hypothesis that time-variation in investors' ex ante assessment of future bear market states, which we refer to as bear market risk, is a priced risk factor. We construct a theoretically motivated option portfolio, AD Bear, that pays off \$1 in bear market states and \$0 otherwise. The short-term returns of this portfolio capture bear market risk. The AD Bear portfolio generates an economically and statistically significant negative alpha relative to standard factor models. We test whether bear market risk is priced in the cross section of stocks by examining the relation between bear beta – stock-level sensitivity to AD Bear portfolio returns – and expected stock returns. Portfolio and regression analyses demonstrate that high-bear beta stocks, i.e. stocks that outperform when bear market risk increases, earn low average returns. This negative crosssectional relation between bear beta and expected stock returns remains strong after controlling for a battery of previously documented risk and characteristic-based pricing effects. Supportive of a risk-based interpretation of our results, portfolios sorted on bear beta exhibit strong cross-sectional variation in post-formation exposure to AD Bear returns, the negative relation between bear beta and future stock returns remains strong even when the sample is restricted to liquid and large cap stocks, and the return predictability persists for at least six months into the future. We conclude that bear market risk is a priced source of risk distinct from previously identified factors.

Appendix A AD Bear Portfolio Sensitivities

In this appendix, we derive the sensitivity of the AD Bear returns to continuous consumption innovations (dB_t) , negative jumps in consumption (Z_t) , and innovations in jump intensity $(dB_{\lambda,t})$.

Assuming a recursive utility function and that the market portfolio is a levered claim to aggregate consumption (i.e., dividend $D_t = C_t^{\phi}$), Wachter (2013) shows that the evolution of the price of the market portfolio, F_t , is given by

$$\frac{dF_t}{F_t} = \mu_{F,t}dt + \phi\sigma dB_t + b_{F,\lambda}\sigma_\lambda\sqrt{\lambda_t}dB_{\lambda,t} + (e^{\phi Z_t} - 1)dN_t,$$
(A.1)

and the evolution of the state price density π_t is defined by

$$\frac{d\pi_t}{\pi_{t^-}} = \mu_{\pi,t} dt - \gamma \sigma dB_t + b_{\pi,\lambda} \sigma_\lambda \sqrt{\lambda_t} dB_{\lambda,t} + (e^{-\gamma Z_t} - 1) dN_t$$
(A.2)

where ϕ is the market portfolio's leverage with respect to aggregate consumption, γ is the risk aversion parameter, and $b_{F,\lambda}$ and $b_{\pi,\lambda}$ are the sensitivities of the market return and the stochastic discount factor, respectively, to $dB_{\lambda,t}$. Because heightened jump intensity increases marginal utility and depresses stock prices, $b_{F,\lambda} < 0$ and $b_{\pi,\lambda} > 0$.

The AD Bear portfolio is defined to generate payoff X_T of \$1 at expiration date T if the time T price of the market portfolio is below a threshold identified by K. Specifically, $X_T = 1\left\{\frac{F_T}{F_0} \leq K\right\}$. Therefore, at any point in time t < T, the price of the AD Bear portfolio is given by

$$X_t = E_t^Q \left(e^{-\int_t^T r_\tau d\tau} 1\left\{ \frac{F_T}{F_0} \le K \right\} \right)$$
(A.3)

where $E^{\mathbb{Q}}$ is the risk-neutral expectation function and r_s is the time s instantaneous risk-free rate.

While equation (A.3) can be solved using numerical methods, it does not have an analytical solution. We make two approximations to arrive at an approximate analytical solution that delivers transparent economic intuition.

Approximation 1: We assume the instantaneous risk-free rate r_t over the time interval from 0 to T is deterministic. In our empirical set-up, T is about 1 month after t and thus the approximation

should be quite accurate. Under this assumption,

$$dX_{t} = E_{t+\Delta t}^{Q} \left(1\left\{ \frac{F_{T}}{F_{0}} \leq K \right\} \right) e^{-r_{t}(T-t-\Delta t)} - E_{t}^{Q} \left(1\left\{ \frac{F_{T}}{F_{0}} \leq K \right\} \right) e^{-r_{t}(T-t)} \\ = \left[E_{t+\Delta t}^{Q} \left(1\left\{ \frac{F_{T}}{F_{0}} \leq K \right\} \right) - E_{t}^{Q} \left(1\left\{ \frac{F_{T}}{F_{0}} \leq K \right\} \right) \right] e^{-r_{t}(T-t-\Delta t)} \\ + E_{t}^{Q} \left(1\left\{ \frac{F_{T}}{F_{0}} \leq K \right\} \right) \left(e^{-r_{t}(T-t-\Delta t)} - e^{-r_{t}(T-t)} \right) \\ = \left[E_{t+\Delta t}^{Q} \left(1\left\{ \frac{F_{T}}{F_{0}} \leq K \right\} \right) - E_{t}^{Q} \left(1\left\{ \frac{F_{T}}{F_{0}} \leq K \right\} \right) \right] e^{-r_{t}(T-t-\Delta t)} + X_{t} \left(e^{r_{t}\Delta t} - 1 \right)$$
(A.4)

Letting $P_t = E_t^Q \left(1 \left\{ \frac{F_T}{F_0} \le K \right\} \right)$ gives

$$dX_t = dP_t e^{-r_t (T - t - \Delta t)} + X_t r_t \Delta t.$$
(A.5)

In the following analysis, we focus on the sensitivity of dP_t to the fundamental risks, which is closely related to the sensitivity of dX_t to the fundamental risks.

Under Wachter's model, $\frac{F_T}{F_0} = exp\left(\phi log\left(\frac{C_T}{C_0}\right) + b_{F,\lambda}\left(\lambda_T - \lambda_0\right)\right)$ (Seo and Wachter (2015)), giving

$$P_t = E_t^Q \left(1 \left\{ \phi \log\left(C_T\right) + b_{F,\lambda} \lambda_T \le \log\left(K\right) + b_{F,\lambda} \lambda_0 + \phi \log\left(C_0\right) \right\} \right)$$
(A.6)

Approximation 2: λ_T follows a CIR model and does not have a closed-form solution. However, over the short interval T, λ_T can be approximated by a Vasicek model with constant volatility and thus follows a normal distribution:

$$\lambda_T \sim N\left(\left(1 - e^{-\kappa\tau}\right)\overline{\lambda} + \lambda_t e^{-\kappa\tau}, \frac{\sigma_\lambda^2 \lambda_t}{2\kappa} \left(1 - e^{-2\kappa\tau}\right)\right). \tag{A.7}$$

Using these two approximations, we get an analytical solution.

 $log(C_T)$ follows a normal distribution with mean $log(C_t) + \left(\mu - \frac{1}{2}\sigma^2\right)\tau$ and variance $\sigma^2\tau$ with

 $\tau = T - t$ if there is no jump. We also assume Z_i is of constant size $\mu_Z < 0$. Following Merton (1976), we know that conditional on $N_T - N_t = n$

$$\phi log(C_T) + b_{\phi} \lambda_T \sim N(\mu_n, \nu^2)$$
 (A.8)

where

$$\mu_n = \phi \log\left(C_t\right) + \mu_c^Q\left(T\right) + \mu_\lambda^Q\left(T\right) + b_\phi \lambda_t e^{-\kappa(T-t)} + n\phi\mu_Z \tag{A.9}$$

and

$$\nu^2 = \phi^2 \sigma^2 T + b_\phi^2 \frac{\sigma_\lambda^2 \lambda_t}{2\kappa} \left(1 - e^{-2\kappa T} \right)$$
(A.10)

where $\mu_{\lambda}^{Q}(\tau)$ and $\mu_{c}^{Q}(T)$ capture the drift terms unrelated to λ_{t} and $\log(C_{t})$, respectively, under the Q measure.

Therefore,

$$P_t = \sum_{n=0}^{\infty} \frac{e^{-\lambda_t (T-t)} \left(\lambda_t (T-t)\right)^n}{n!} N(d_n)$$
(A.11)

where

$$d_{n} = \frac{\log(K) + b_{\phi}\lambda_{0} + \phi\log(C_{0}) - \mu_{n}}{\nu} = \frac{\eta_{n}}{\nu}$$
(A.12)

and $\eta_n = \log(K) + b_{\phi}\lambda_0 + \phi \log(C_0) - \mu_n < 0.$

We now examine the log excess returns of the AD Bear portfolio resulting from different types of shocks. Specifically,

$$\Delta P_t = \frac{\partial P_t}{\partial B_t} dB_t + \frac{\partial P_t}{\partial B_{\lambda,t}} dB_{\lambda,t} + \frac{\partial P_t}{\partial J_t} dJ_t$$

First, we solve for the effect of dB_t on P_t . Because dB_t only affects d_n and we have $\frac{\Delta d_n}{dB_t} = -\frac{\phi\sigma}{\nu}$,

we have

$$\frac{\partial P_t}{\partial B_t} = \sum_{n=0}^{\infty} \frac{e^{-\lambda_t (T-t)} \left(\lambda_t (T-t)\right)^n}{n!} N'(d_n) \times \left(-\frac{\phi\sigma}{\nu}\right)$$
$$= e^{-\lambda_t (T-t)} \left(\sum_{n=0}^{\infty} \delta_n\right) \times \left(-\frac{\phi\sigma}{\nu}\right)$$
(A.13)

where 35

$$\delta_n = \frac{(\lambda_t \, (T-t))^n}{n!} \frac{1}{\sqrt{2\pi}} exp\left\{-\frac{1}{2} \left[\frac{\log\left(K\right) + b_\phi \lambda_0 + \phi \log\left(C_0\right) - \mu_n}{\nu}\right]^2\right\}.$$
 (A.14)

Next , the first-order effect of ${\cal Z}_t$ on ${\cal P}_t$ is

$$\frac{\partial P_t}{\partial J_t} = e^{-\lambda_t (T-t)} \left(\sum_{n=0}^{\infty} \delta_n \right) \times -\frac{\phi \mu_Z}{\nu} + o\left(Z_t\right)$$
(A.15)

where $o\left(Z_t^2\right)$ is a second and higher order effect.

Finally, we examine the effect of $dB_{\lambda,t}$ on P_t . Letting

$$\frac{\Delta d_n}{dB_{\lambda,t}} = \left[-\frac{b_{\phi}e^{-\kappa(T-t)}}{\nu} - \frac{\left(\log\left(K\right) + b_{\phi}\lambda_0 + \phi\log\left(C_0\right) - \mu_n\right)b_{\phi}^2\frac{\sigma_{\lambda}^2}{2\kappa}\left(1 - e^{-2\kappa T}\right)}{\nu^2} \right]\sigma_{\lambda}\sqrt{\lambda_t} \quad (A.16)$$

we have 36

$${}^{35}\frac{\partial \delta_n}{\partial \log(K)} = \delta_n \left[\mu_n - (\log\left(K\right) + b_{\phi}\lambda_0 + \phi \log\left(C_0\right)) \right].$$
Because $\mu_n - (\log\left(K\right) + b_{\phi}\lambda_0 + \phi \log\left(C_0\right)) > 0,$ $\frac{\partial \delta_n}{\partial \log(K)} > 0.$ ³⁶Note that

$$\frac{\partial P_{t}}{\partial B_{\lambda,t}} = \frac{\partial e^{-\lambda_{t}(T-t)} \left(\lambda_{t} \left(T-t\right)\right)^{n}}{\partial \lambda_{t}} N\left(d_{n}\right) \times \sigma_{\lambda} \sqrt{\lambda_{t}} + e^{-\lambda_{t}(T-t)} \left(\sum_{n=0}^{\infty} \delta_{n}\right) \times \frac{\Delta d_{n}}{dB_{\lambda,t}} \\
= e^{-\lambda_{t}(T-t)} \left(T-t\right) \left[\sum_{n=0}^{\infty} \delta_{n} \frac{-\phi \mu_{Z}}{\nu}\right] \times \sigma_{\lambda} \sqrt{\lambda_{t}} + e^{-\lambda_{t}(T-t)} \left(\sum_{n=0}^{\infty} \delta_{n}\right) \times \frac{\Delta d_{n}}{dB_{\lambda,t}} \\
= e^{-\lambda_{t}(T-t)} \left(\sum_{n=0}^{\infty} \delta_{n}\right) \times \\
\left\{ \underbrace{\left[-\left(T-t\right)\phi \mu_{Z}\right]}_{\text{more future jumps}} + \left[\underbrace{-\frac{b_{\phi}e^{-\kappa T}}{\nu}}_{\text{due to changes in equity price}} \underbrace{-\frac{\eta_{n}b_{\phi}^{2}\frac{\sigma_{\lambda}^{2}}{2\kappa}\left(1-e^{-2\kappa T}\right)}{\nu^{2}}}_{\sigma_{\lambda}\sqrt{\lambda_{t}}} \right] \right\} \times \\$$
(A.17)

$$\begin{aligned} &\frac{\partial \left(e^{-\lambda_t (T-t)} \left(\lambda_t \left(T-t\right)\right)^n\right)}{\partial \lambda_t} \\ &= \frac{\partial \left[e^{-\lambda_t (T-t)+n \log(\lambda_t (T-t))}\right]}{\partial \lambda_t} \\ &= e^{-\lambda_t (T-t)+n \log(\lambda_t (T-t))} \times \left[-(T-t) + \frac{n}{\lambda_t}\right] \\ &= e^{-\lambda_t (T-t)} \left(\lambda_t \left(T-t\right)\right)^n \times \left[-(T-t) + \frac{n}{\lambda_t}\right] \\ &\frac{\partial \sum_{n=0}^{\infty} \left(\frac{e^{-\lambda_t (T-t)} \left(\lambda_t \left(T-t\right)\right)^n}{n!}\right)}{\partial \lambda_t} N\left(d_n\right) \\ &= \sum_{n=0}^{\infty} \left(\frac{e^{-\lambda_t (T-t)} \left(\lambda_t \left(T-t\right)\right)^n}{n!} \left(-(T-t)\right) + \frac{e^{-\lambda_t (T-t)} \left(\lambda_t \left(T-t\right)\right)^{n-1}}{(n-1)!} \left(T-t\right)\right) N\left(d_n\right) \\ &= e^{-\lambda_t (T-t)} \left(T-t\right) \left[\sum_{n=1}^{\infty} \left(-\frac{\left(\lambda_t \left(T-t\right)\right)^n}{n!} + \frac{\left(\lambda_t \left(T-t\right)\right)^{n-1}}{(n-1)!}\right) N\left(d_n\right) - N\left(d_0\right)\right] \\ &= e^{-\lambda_t (T-t)} \left(T-t\right) \left[\sum_{n=1}^{\infty} \frac{\left(\lambda_t \left(T-t\right)\right)^{n-1}}{(n-1)!} \left[N\left(d_n\right) - N\left(d_{n-1}\right)\right]\right] \\ &= e^{-\lambda_t (T-t)} \left(T-t\right) \left[\sum_{n=1}^{\infty} \frac{\left(\lambda_t \left(T-t\right)\right)^{n-1}}{(n-1)!} N'\left(d_{n-1}\right) - \frac{\phi\mu_Z}{\nu}\right] \\ &= e^{-\lambda_t (T-t)} \left(T-t\right) \left[\sum_{n=0}^{\infty} \frac{\left(\lambda_t \left(T-t\right)\right)^n}{n!} N'\left(d_n\right) - \frac{\phi\mu_Z}{\nu}\right]. \end{aligned}$$

Appendix B Bayes Shrinkage Method

To calculate bear beta, we run rolling-window ordinary least squares (OLS) regressions for each stock to estimate sensitivities to MKT and AD Bear excess returns and adjust these estimates using a Bayes shrinkage method. This appendix presents the derivation of our measure and discusses its implementation.

We develop our measure by considering the following regression model:

$$R_{i,d} = \beta_i^{\text{MKT}} \text{MKT}_d + \beta_i^{\text{BEAR}} R_{\text{AD Bear},d} + \epsilon_{i,d}$$
(B.1)

where $R_{i,d}$ is the demeaned return of stock *i* for time *d*, MKT_{*d*} is the contemporaneous demeaned market excess return, and $R_{\text{AD Bear},d}$ is the contemporaneous demeaned AD Bear excess return. We consider demeaned returns because doing so alleviates the need to include an intercept term in the regression specification, thereby simplifying the derivation. We let $\beta_i = \left[\beta_i^{\text{MKT}} \quad \beta_i^{\text{BEAR}}\right]'$ be the vector of true parameter values and $\hat{\beta}_i = \left[\hat{\beta}_i^{\text{MKT}} \quad \hat{\beta}_i^{\text{BEAR}}\right]'$ be slope coefficients generated by running an OLS regression specified by equation (B.1).

We follow Fama and French (1997) and take the prior distribution of β_i to be multivariate normal (MVN) with mean vector β and covariance matrix Σ . We also assume that $\epsilon_{i,d}$ follows a normal distribution with mean zero and variance σ_i^2 . The posterior distribution of β_i is then multivariate normal with mean $\tilde{\beta}_i$ given by

$$\widetilde{\beta}_{i} = \beta + \left(\Sigma^{-1} + \frac{X'X}{\sigma_{i}^{2}}\right)^{-1} \frac{X'X}{\sigma_{i}^{2}} \left(\hat{\beta}_{i} - \beta\right)$$
$$= \left(\Sigma^{-1} + \frac{X'X}{\sigma_{i}^{2}}\right)^{-1} \Sigma^{-1}\beta + \left(\Sigma^{-1} + \frac{X'X}{\sigma_{i}^{2}}\right)^{-1} \frac{X'X}{\sigma_{i}^{2}} \hat{\beta}_{i}$$
(B.2)

where X is the matrix of demeaned explanatory returns. Intuitively, $\tilde{\beta}_i$ shrinks the OLS estimate $\hat{\beta}_i$ toward the prior mean β to correct for the sampling errors. Higher (lower) OLS sampling errors, captured by $\frac{X'X}{\sigma_i^2}$, result in more (less) weight being placed on the prior mean β and less (more) weight being placed on the OLS estimate $\hat{\beta}_i$.

Using the methodology described above, we calculate a value of bear beta for each stock i at the end of each month t as follows. At the end of each month t, we begin by running a standard OLS regression of five-day AD Bear excess returns ($R_{AD Bear}$) on contemporaneous five-day market portfolio excess returns (MKT) using data from all five trading day periods ending on days d in months t - 11 through t, inclusive. The regression specification is

$$R_{\text{AD Bear},d} = \delta_0 + \delta_1 \text{MKT}_d + \zeta_d. \tag{B.3}$$

The regression residuals, ζ_d , capture the component of the AD Bear excess return that is orthogonal to the market return. As discussed in our theoretical development of the AD Bear portfolio, ζ_d captures bear market risk.

For each stock i, we then regress the five-day excess stock returns on the contemporaneous market portfolio excess returns and ζ_d using data from the same period that is used estimate regression (B.3). To calculate the five-day stock return $R_{i,d}$, we require that a return for each of the five days be available. We demean the market return within the regression period to eliminate the intercept coefficient from the regression. The regression specification is

$$R_{i,d} = \beta_{i,t}^{\mathrm{m}} \mathrm{MKT}_d + \beta_{i,t}^{\mathrm{BEAR}} \zeta_d + \epsilon_{i,d}.$$
(B.4)

We denote the vector slope coefficients estimated from the OLS regression (B.1) $\hat{\beta}_{i,t} = \begin{bmatrix} \hat{\beta}_{i,t}^{\text{m}} & \hat{\beta}_{i,t}^{\text{BEAR}} \end{bmatrix}$. The subscript *t* indicates values generated by the regression run at the end of month *t*. We require a minimum of 183 observations, or 180 degrees of freedom, to run the regression.

To implement the Bayes shrinkage method, we need values for the mean and covariance matrix of the prior distribution. The mean of the prior distribution used to calculate Bear beta for all stocks *i* at the end of month *t*, which we denote $\beta_t = \begin{bmatrix} \beta_t^m & \beta_t^{\text{BEAR}} \end{bmatrix}$ is taken to be the average value of $\hat{\beta}_{i,t}$ over all observations of $\hat{\beta}_{i,t}$ generated in month *t* and prior to month *t*. Specifically,

$$\beta_t = \frac{\sum_{i,\tau \le t} \hat{\beta}_{i,\tau}}{N} \tag{B.5}$$

where N is the number of valid values of $\hat{\beta}_{i,\tau}$ calculated across all stocks *i* for months $\tau \leq t$. To calculate the covariance matrix of the prior distribution, we make the assumption that $\beta_{i,t}^{\text{m}}$ and $\beta_{i,t}^{\text{BEAR}}$ are uncorrelated. This makes the covariance matrix of the prior distribution diagonal. The covariance matrix of the prior distribution used for all stocks at the end of month *t*, which we denote Σ_t , is therefore taken to be the matrix with diagonal entries equal to the pooled variances of $\hat{\beta}_{i,t}^{\text{m}}$ and $\hat{\beta}_{i,t}^{\text{BEAR}}$ and off-diagonal entries set to zero:

$$\Sigma_t = \begin{bmatrix} \sigma_{\mathrm{m,t}}^2 & 0\\ 0 & \sigma_{\mathrm{BEAR},t}^2 \end{bmatrix}$$
(B.6)

where

$$\sigma_{\mathrm{m},t}^{2} = \frac{\sum_{i,\tau \le t} \left(\hat{\beta}_{i,\tau}^{\mathrm{m}} - \beta_{t}^{\mathrm{m}}\right)^{2}}{N-1} \tag{B.7}$$

and

$$\sigma_{\text{BEAR},t}^2 = \frac{\sum_{i,\tau \le t} \left(\hat{\beta}_{i,\tau}^{\text{BEAR}} - \beta_t^{\text{BEAR}}\right)^2}{N-1},\tag{B.8}$$

both of which are calculated across all stocks *i* for months $\tau \leq t$.

The last remaining component needed to implement the Bayes shrinkage method is an estimate of the covariance matrix of the OLS estimates $\hat{\beta}_{i,t}^{\text{m}}$ and $\hat{\beta}_{i,t}^{\text{BEAR}}$. We estimate this matrix to be the standard OLS estimate generated by regression (B.4). Since MKT_d and ζ_d are orthogonal, this matrix is diagonal and given by

$$\frac{X_t' X_t}{\sigma_{i,t}^2} = \begin{bmatrix} v_{i,m,t}^{-2} & 0\\ 0 & v_{i,\text{BEAR},t}^{-2} \end{bmatrix}$$
(B.9)

where X_t is the matrix of values of MKT_d and ζ_d used in regression (B.4), and $\sigma_{i,t}^2$ is the variance of the residuals from the regression. v_m^2 and v_{Bear}^2 are therefore the variances of the regression coefficients $\hat{\beta}_{i,t}^{\text{m}}$ and $\hat{\beta}_{i,t}^{\text{BEAR}}$ from regression (B.4), respectively, under the OLS assumptions.

The mean of the posterior distribution, $\widetilde{\beta_{i,t}}$, is then very easy to compute:

$$\widetilde{\beta_{i,t}} = \left(\begin{bmatrix} \sigma_{m,t}^{-2} & 0 \\ 0 & \sigma_{BEAR,t}^{-2} \end{bmatrix} + \begin{bmatrix} v_{m,t}^{-2} & 0 \\ 0 & v_{BEAR,t}^{-2} \end{bmatrix} \right)^{-1} \begin{bmatrix} \sigma_{m,t}^{-2} & 0 \\ 0 & \sigma_{BEAR,t}^{-2} \end{bmatrix} \beta_{t} \\ + \left(\begin{bmatrix} \sigma_{m,t}^{-2} & 0 \\ 0 & \sigma_{BEAR,t}^{-2} \end{bmatrix} + \begin{bmatrix} v_{m,t}^{-2} & 0 \\ 0 & v_{BEAR,t}^{-2} \end{bmatrix} \right)^{-1} \begin{bmatrix} v_{m,t}^{-2} & 0 \\ 0 & v_{BEAR,t}^{-2} \end{bmatrix} \hat{\beta}_{i,t} \\ = \begin{bmatrix} \frac{\sigma_{m,t}^{-2}}{\sigma_{m,t}^{-2} + v_{m,t}^{-2}} & 0 \\ 0 & \frac{\sigma_{BEAR,t}^{-2}}{\sigma_{BEAR,t}^{-2} + v_{BEAR,t}^{-2}} \end{bmatrix} \beta_{t} + \begin{bmatrix} \frac{v_{m,t}^{-2}}{\sigma_{m,t}^{-2} + v_{m,t}^{-2}} & 0 \\ 0 & \frac{\sigma_{BEAR,t}^{-2} + v_{BEAR,t}^{-2}}{\sigma_{BEAR,t}^{-2} + v_{BEAR,t}^{-2}} \end{bmatrix} \beta_{t} + \begin{bmatrix} \frac{v_{m,t}^{-2}}{\sigma_{m,t}^{-2} + v_{m,t}^{-2}} & 0 \\ 0 & \frac{v_{BEAR,t}^{-2} + v_{BEAR,t}^{-2}}{\sigma_{BEAR,t}^{-2} + v_{BEAR,t}^{-2}} \end{bmatrix} \hat{\beta}_{t}$$
(B.10)

The final Bayes shrinkage method value of bear beta used in our empirical analyses is: 37

$$\beta_{i,t,\text{Bayes}}^{\text{BEAR}} = \frac{\sigma_{\text{BEAR},t}^{-2}}{\sigma_{\text{BEAR},t}^{-2} + v_{\text{BEAR},t}^{-2}} \beta_t^{\text{BEAR}} + \frac{v_{\text{BEAR},t}^{-2}}{\sigma_{\text{BEAR},t}^{-2} + v_{\text{BEAR},t}^{-2}} \hat{\beta}_{i,t}^{\text{BEAR}}.$$
(B.11)

³⁷For brevity, we omit the subscripts i, t, Bayes in the main paper.

References

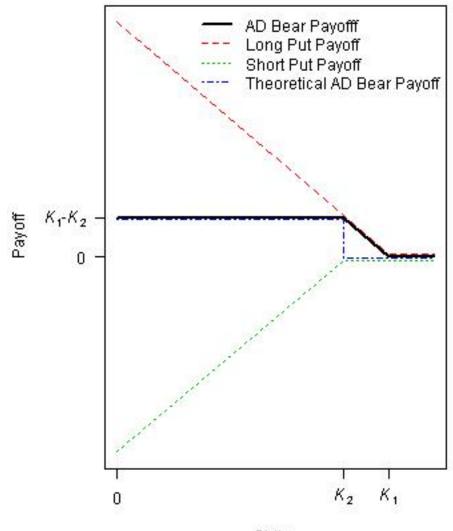
- Agarwal, V., Arisoy, E., and Naik, N. 2016. Volatility of aggregate volatility and hedge fund returns. Journal of Financial Economics, forthcoming.
- Agarwal, V. and Naik, N. Y. 2004. Risks and portfolio decisions involving hedge funds. Review of Financial studies, 17(1), 63–98.
- Amihud, Y. 2002. Illiquidity and stock returns: Cross-section and time-series effects. Journal of Financial Markets, 5(1), 31–56.
- An, B.-J., Ang, A., Bali, T. G., and Cakici, N. 2014. The joint cross section of stocks and options. Journal of Finance, 69(5), 2279–2337.
- Ang, A., Chen, J., and Xing, Y. 2006. Downside risk. Review of Financial Studies, 19(4), 1191–1239.
- Ang, A., Hodrick, R. J., Xing, Y., and Zhang, X. 2006. The cross-section of volatility and expected returns. Journal of Finance, 61(1), 259–299.
- Arrow, K. J. 1964. The role of securities in the optimal allocation of risk-bearing. The Review of Economic Studies, 31(2), 91–96.
- Bali, T. G., Cakici, N., and Whitelaw, R. F. 2014. Hybrid tail risk and expected stock returns: When does the tail wag the dog? Review of Asset Pricing Studies, pages 207–246.
- Bali, T. G. and Hovakimian, A. 2009. Volatility spreads and expected stock returns. Management Science, 55(11), 1797–1812.
- Bali, T. G. and Murray, S. 2013. Does risk-neutral skewness predict the cross-section of equity option portfolio returns? Journal of Financial and Quantitative Analysis, 48(4), 1145–1171.
- Bawa, V. S. and Lindenberg, E. B. 1977. Capital market equilibrium in a mean-lower partial moment framework. Journal of Financial Economics, 5(2), 189–200.
- Bollerslev, T. and Todorov, V. 2011. Tails, fears, and risk premia. The Journal of Finance, 66(6), 2165–2211.
- Bondarenko, O. 2014. Why are put options so expensive? The Quarterly Journal of Finance, 4(03), 1450015.
- Breeden, D. T. and Litzenberger, R. H. 1978. Prices of state-contingent claims implicit in option prices. Journal of Business, 51(4), 621–651.
- Broadie, M., Chernov, M., and Johannes, M. 2009. Understanding index option returns. Review of Financial Studies, 22(11), 4493–4529.
- Carhart, M. M. 1997. On persistence in mutual fund performance. Journal of Finance, 52(1), 57–82.
- Chabi-Yo, F., Ruenzi, S., and Weigert, F. 2015. Crash sensitivity and the cross-section of expected stock returns. SSRN eLibrary.

- Chang, B. Y., Christoffersen, P., and Jacobs, K. 2013. Market skewness risk and the cross section of stock returns. Journal of Financial Economics, 107(1), 46–68.
- Coval, J. D. and Shumway, T. 2001. Expected option returns. Journal of Finance, 56(3), 983–1009.
- Cremers, M., Halling, M., and Weinbaum, D. 2015. Aggregate jump and volatility risk in the cross-section of stock returns. The Journal of Finance, 70(2), 577–614.
- Cremers, M. and Weinbaum, D. 2010. Deviations from put-call parity and stock return predictability. Journal of Financial Quantitative Analysis, 45(2), 335–367.
- Debreu, G. Theory of value: An axiomatic analysis of economic equilibrium. 17. Yale University Press, 1959.
- Dimson, E. 1979. Risk measurement when shares are subject to infrequent trading. Journal of Financial Economics, 7(2), 197–226.
- Fama, E. F. and French, K. R. 1992. The cross-section of expected stock returns. Journal of Finance, 47(2), 427–465.
- Fama, E. F. and French, K. R. 1993. Common risk factors in the returns on stocks and bonds. Journal of Financial Economics, 33(1), 3–56.
- Fama, E. F. and French, K. R. 1997. Industry costs of equity. Journal of Financial Economics, 43, 153–193.
- Fama, E. F. and French, K. R. 2015. A five-factor asset pricing model. Journal of Financial Economics, 116(1), 1–22.
- Fama, E. F. and MacBeth, J. D. 1973. Risk, return, and equilibrium: Empirical tests. Journal of Political Economy, 81(3), 607–636.
- Frazzini, A. and Pedersen, L. H. 2014. Betting against beta. Journal of Financial Economics, 111(1), 1–25.
- Gabaix, X. 2012. Variable rare disasters: An exactly solved framework for ten puzzles in macrofinance. The Quarterly Journal of Economics, 127, 645–700.
- Harvey, C. R. and Siddique, A. 2000. Conditional skewness in asset pricing tests. Journal of Finance, 55(3), 1263–1295.
- Hou, K., Xue, C., and Zhang, L. 2015. Digesting anomalies: An investment approach. Review of Financial Studies, 28(3), 650–705.
- Jackwerth, J. C. 2000. Recovering risk aversion from option prices and realized returns. Review of Financial Studies, 13(2), 433–451.
- Jegadeesh, N. and Titman, S. 1993. Returns to buying winners and selling losers: Implications for stock market efficiency. Journal of Finance, 48(1), 65–91.
- Jurek, J. W. and Stafford, E. 2015. The cost of capital for alternative investments. The Journal of Finance, 70(5), 2185–2226.

- Kelly, B. and Jiang, H. 2014. Tail risk and asset prices. Review of Financial Studies, 27(10), 2841–2871.
- Lettau, M., Maggiori, M., and Weber, M. 2014. Conditional risk premia in currency markets and other asset classes. Journal of Financial Economics, 114(2), 197–225.
- Lo, A. W. 2001. Risk management for hedge funds: Introduction and overview. Financial Analysts Journal, 57(6).
- Merton, R. C. 1976. Option pricing when underlying stock returns are discontinuous. Journal of financial economics, 3(1-2), 125–144.
- Mitchell, M. and Pulvino, T. 2001. Characteristics of risk and return in risk arbitrage. Journal of Finance, 56(6), 2135–2175.
- Newey, W. K. and West, K. D. 1987. A simple, positive semi-definite, heteroskedasticity and autocorrelation consistent covariance matrix. Econometrica, 55(3), 703–708.
- Scholes, M. and Williams, J. T. 1977. Estimating betas from nonsynchronous data. Journal of Financial Economics, 5(3), 309–327.
- Seo, S. B. and Wachter, J. A. 2015. Option prices in a model with stochastic disaster risk. Working Paper.
- Shleifer, A. and Vishny, R. W. 1997. The limits of arbitrage. The Journal of Finance, 52(1), 35–55.
- Shumway, T. 1997. The delisting bias in CRSP data. Journal of Finance, 52(1), 327–340.
- Wachter, J. A. 2013. Can time-varying risk of rare disasters explain aggregate stock market volatility? The Journal of Finance, 68(3), 987–1035.
- Xing, Y., Zhang, X., and Zhao, R. 2010. What does the individual option volatility smirk tell us about future equity returns? Journal of Financial Quantitative Analysis, 45(3), 641–662.

Figure 1: Construction of AD Bear

The figure below illustrates the construction of the AD Bear portfolio. The solid black line shows the payoff function of the AD Bear portfolio. The dashed red line shows the payoff function of the long put position. The dotted green line shows the payoff function of the short put position. The dash-dotted blue line shows the payoff function of the theoretical AD Bear portfolio.



Strike

Figure 2: AD Bear CAPM Residuals

The figure below shows the residuals from a regression of AD Bear excess returns on market excess returns (MKT). The numbers 1 - 5 indicate the five largest residuals, in decreasing order.

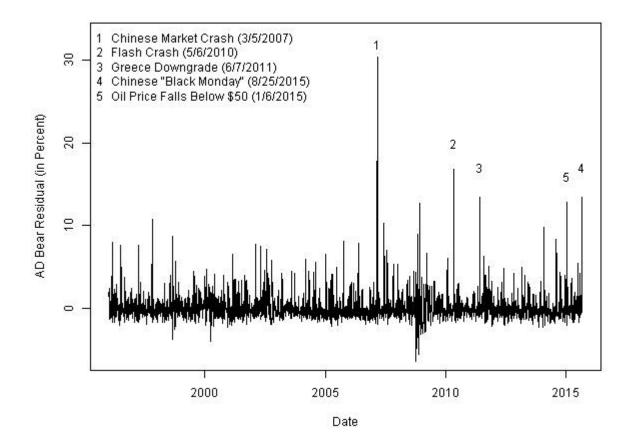


Table 1: Sensitivities of Market Portfolio and AD Bear Returns to Three Sources ofFundamental Risk

The table shows the sensitivities of the stochastic discount factor or SDF $(\frac{d\pi_t}{\pi_{t^-}})$, the market portfolio return $(\frac{dF_t}{F_t})$, and the AD Bear portfolio return $(\frac{dX_t}{X_t})$ to each of the three fundamental risks in Wachter (2013)'s model under a first-order Taylor expansion. dB_t is a standard Brownian motion capturing continuous consumption shocks. Z_t is the realized consumption jump at time t. $dB_{\lambda,t}$ is the shock to the time-varying intensity of future jumps. $\Delta = e^{-\lambda_t \tau} (\sum_{n=0}^{\infty} \delta_n) \nu^{-1}$ is the ratio between the sensitivity of $\frac{dX_t}{X_t}$ to dB_t and the sensitivity of $\frac{dF_t}{F_t}$ to dB_t . Refer to equations (1) to (2) for more parameter definitions. Hedged AD Bear Return is the return to a portfolio that invests in one unit of the AD Bear portfolio and hedges the market exposure by investing ΔX_t in the market portfolio where X_t is the price of the AD Bear portfolio. $b_{F,\lambda}$ is negative. γ , ϕ , $b_{\pi,\lambda}$ and $b_{X,\lambda}$ are positive.

Source	SDF	Market Return	AD Bear Return	Hedged AD Bear Return
of Risk	$\left(\frac{d\pi_t}{\pi_t^{-}}\right)$	$\left(\frac{dF_t}{F_t}\right)$	$\left(\frac{dX_t}{X_t}\right)$	$\left(\frac{dX_t}{X_t}\right) + \Delta\left(\frac{dF_t}{F_t}\right)$
dB_t	$-\gamma$	ϕ	$-\Delta\phi$	0
Z_t	$-\gamma Z_t$	ϕZ_t	$-\Delta\phi Z_t$	0
$dB_{\lambda,t}$	$b_{\pi,\lambda}$	$b_{F,\lambda}$	$-\Delta b_{F,\lambda} + b_{X,\lambda}$	$b_{X,\lambda}$

Table 2: Summary Statistics for AD Bear Portfolio and Factor Returns

The table below presents summary statistics for the five-day excess returns of the AD Bear portfolio and standard risk factors. , The market factor (MKT), the size factor (SMB and SMB_5), the value factor (HML), the momentum factor (MOM), the profitability factor (RMW), the investment factor (CMA) are from Ken French's website, with SMB the size factor used in Fama and French (1992) and SMB_5 the size factor used in Fama and French (2015). ME, ROE, and IA are the size factor, the profitability factor, and the investment factor used in the Hou et al. (2015). The unscaled AD Bear excess returns (AD Bear (Unscaled)) are the actual excess returns generated by the AD Bear portfolio. The scaled (AD Bear) excess returns are the unscaled excess returns divided by 28.87836. The scaling factor 28.87836 was chosen so that the standard deviation of the scaled AD Bear excess returns is equal to the standard deviation of the MKT factor returns. The five-day excess returns of MKT, SMB, HML, MOM, SMB₅, RMW, CMA, ME, IA, and ROE are calculated by first compounding the daily gross returns of the factors over a five-day period and then subtracting the contemporaneous five-day risk free rate. The table presents the mean (Mean), standard deviation (SD), skewness (Skew), minimum value (Min), median value (Median), 95th percentile value (95%), 99th percentile value (99%), and maximum value (Max) for the daily five-day overlapping excess returns of the AD Bear portfolio and each of the factors. The returns cover portfolio formation dates (return dates) from January 4, 1996 (January 11, 1996) through August 24, 2015 (August 31, 2015).

Factor	Mean	SD	Skew	Min	Median	95%	99%	Max
AD Bear (Unscaled)	-8.12	74.72	2.81	-98.31	-28.48	131.60	269.91	999.68
AD Bear	-0.28	2.59	2.81	-3.40	-0.99	4.56	9.35	34.62
MKT	0.15	2.59	-0.49	-18.43	0.31	3.79	6.53	19.49
SMB	0.04	1.46	-0.48	-12.19	0.08	2.14	3.89	7.52
HML	0.05	1.52	0.54	-8.29	0.02	2.32	5.17	12.47
MOM	0.14	2.45	-0.93	-16.45	0.25	3.59	6.48	14.21
ME	0.07	1.46	-0.34	-11.12	0.10	2.19	3.93	7.79
ROE	0.11	1.27	0.10	-6.36	0.13	2.03	3.93	10.14
IA	0.06	1.03	0.65	-5.66	0.01	1.70	3.09	8.61
SMB_5	0.05	1.41	-0.42	-11.81	0.09	2.09	3.70	7.36
RMW	0.09	1.21	0.75	-7.09	0.06	1.89	3.89	9.88
CMA	0.06	1.04	0.81	-5.15	-0.01	1.83	3.27	8.99

Table 3: Factor Analysis of AD Bear Portfolio Returns

The table below presents the results of time-series regressions of AD Bear portfolio excess returns on standard factors. The table shows the intercept coefficient (Excess Return or α) and slope coefficients (β), adjusted *R*-squared (Adj. R^2), and number of observations (n) for each regression. *t*-statistics, adjusted following Newey and West (1987) using 22 lags, testing the null hypothesis of a zero intercept or slope coefficient, are shown in parentheses below the corresponding coefficient.

	Excess Return					
Value	Excess	CAPM	FF3	FFC	C	FF5
Excess Return or α	-0.28	-0.15	-0.16	-0.14	-0.13	-0.13
	(-3.60)	(-3.83)	(-3.85)	(-3.23)	(-3.09)	(-2.97)
$\beta_{ m MKT}$		-0.81	-0.81	-0.85	-0.85	-0.87
0		(-18.58)	(-18.18)	(-20.31)	(-18.07)	(-19.30)
$\beta_{ m SMB}$			0.06	0.07		
R			$(1.89) \\ 0.05$	(2.15) -0.00		0.16
$\beta_{ m HML}$			(1.00)	(-0.09)		(2.86)
$\beta_{ m MOM}$			(1.00)	(-0.09) -0.11		(2.80)
PMOM				(-4.40)		
$\beta_{ m ME}$				(1.10)	0.04	
					(1.20)	
$\beta_{ m ROE}$					-0.14	
					(-2.84)	
β_{IA}					-0.06	
					(-1.18)	
β_{SMB_5}						0.02
						(0.63)
$\beta_{ m RMW}$						-0.16
						(-3.41)
$\beta_{ m CMA}$						-0.25
2			_		_	(-3.97)
Adj. R^2	0.00%	65.32%	65.47%	66.41%	65.88%	66.39%
n	4910	4910	4910	4910	4910	4910

Table 4: Summary Statistics

The table below presents cross-sectional summary statistics for bear beta (β^{BEAR}), market capitalization (MKTCAP), and Amihud (2002) illiquidity (ILLIQ). The All Stocks sample includes all U.S.-based stocks in the CRSP database with a valid value of β^{BEAR} . The Liquid sample is the subset of the All Stocks sample with values of ILLIQ lower than the 80th percentile value of ILLIQ among NYSE stocks. The Large Cap sample is the subset of the All Stocks sample with MKTCAP greater than the 50th percentile MKTCAP value among NYSE stocks. This table shows the time-series averages of the monthly cross-sectional mean (Mean), standard deviation (SD), skewness (Skew), minimum value (Min), 25th percentile value (25%), median value (Median), 75th percentile value (75%), maximum value (Max), and number of observations with valid values (n) for β^{BEAR} , MKTCAP, and ILLIQ using each sample. The summary statistics cover the 225 months t from December 1996 through August 2015.

Sample	Variable	Mean	SD	Skew	Min	25%	Median	75%	Max	n
All Stocks	β^{BEAR}	0.06	0.40	0.23	-1.67	-0.19	0.05	0.30	2.05	4787
	MKTCAP	3176	15163.11	13.66	1	75	308	1335	406290	4784
	ILLIQ	197.52	1081.87	17.41	0.00	0.45	4.75	48.71	36793.82	4502
Liquid	β^{BEAR}	0.08	0.38	0.25	-1.39	-0.16	0.06	0.30	1.69	2041
	MKTCAP	6995	22304.50	9.13	69	743	1600	4368	406290	2041
	ILLIQ	0.69	0.78	1.26	0.00	0.09	0.34	1.06	3.01	2041
Large Cap	β^{BEAR}	0.04	0.34	0.30	-1.16	-0.17	0.02	0.24	1.47	1005
	MKTCAP	13159	30307.80	6.60	1598	2473	4316	10660	406290	1005
	ILLIQ	0.26	1.52	18.78	0.00	0.03	0.08	0.20	42.56	1005

Table 5: β^{BEAR} -Sorted Portfolios Returns

The table below presents the results of univariate portfolio analyses of the relation between β^{BEAR} and future stock returns. Each month t, all stocks in the sample are sorted into decile portfolios based on an ascending sort of β^{BEAR} . The columns labeled " β^{BEAR} 1" through " β^{BEAR} 10" present results for the first through 10th β^{BEAR} decile portfolios. The column labeled " β^{BEAR} 10-1" presents results for a portfolio that is long stocks in the 10th β^{BEAR} decile portfolio and short stocks in the first β^{BEAR} decile portfolio. The table shows the average month t+1 value-weighted excess return (Excess Return), alphas (α) relative to the CAPM, FF3, FFC, Q, and FF5 factor models, and factor sensitivities relative to the FF5 factors. Newey and West (1987) t-statistic using three lags are presented in parentheses. The row labeled "Pre-Formation" shows the time-series average of the monthly value-weighted average values of pre-formation β^{BEAR} for each of the portfolios. The row labeled "Post-Formation" presents the corresponding post-formation β^{BEAR} . calculated as the slope coefficient on AD Bear portfolio excess returns from a regression of the daily five-day overlapping portfolio excess returns on the contemporaneous MKT and AD Bear portfolio excess returns. t-statistics for the post-formation sensitivities are adjusted following Newey and West (1987) using 22 lags and reported in parentheses. Panels A, B, and C present results for the All Stocks, Liquid, and Large Cap samples, respectively.

			1 01	101 110	III D		Samp					
		1	5	ŝ	4	ъ	9	4	x	6	10	10-1
Model	Value	β^{BEAR}	β^{BEAR}	β^{BEAR}	$eta_{ m BEAR}$	$eta_{ m BEAR}$	β^{BEAR} (β^{BEAR}	$eta_{ m BEAR}$ (β^{BEAR} (β^{BEAR}	β^{BEAR}
Excess Return	Excess Returns	$ \begin{array}{c} 0.99 \\ (2.51) \end{array} $	0.77 (2.37)	0.68 (2.33)	0.47 (1.53)	0.61 (1.87)	0.42 (1.09)	0.44 (1.11)	$0.42 \\ (0.91)$	0.27 (0.54)	-0.14 (-0.23)	-1.13 (-2.67)
CAPM	α	$\begin{array}{c} 0.47 \\ (2.46) \end{array}$	$\begin{array}{c} 0.30 \\ (1.85) \end{array}$	$\begin{array}{c} 0.24 \\ (2.15) \end{array}$	$\begin{array}{c} 0.01 \\ (0.08) \end{array}$	$\begin{array}{c} 0.09 \\ (1.00) \end{array}$	$-0.11 \\ (-0.69)$	-0.13 (-0.82)	-0.21 (-1.18)	$-0.46 \\ (-2.40)$	$-1.00 \\ (-3.51)$	-1.48 (-3.59)
FF3	α	$\begin{array}{c} 0.39 \\ (2.23) \end{array}$	$0.26 \\ (1.88)$	$\begin{array}{c} 0.22\\ (2.28) \end{array}$	$-0.00 \ (-0.03)$	$\begin{array}{c} 0.11 \\ (1.13) \end{array}$	$-0.07 \\ (-0.53)$	$-0.08 \\ (-0.58)$	$-0.19 \\ (-1.21)$	-0.43 (-2.56)	-0.94 (-3.88)	$-1.33 \\ (-3.92)$
FFC	α	$\begin{array}{c} 0.43 \\ (2.21) \end{array}$	$\begin{array}{c} 0.29 \\ (2.03) \end{array}$	$\begin{array}{c} 0.23 \\ (2.24) \end{array}$	$\begin{array}{c} 0.01 \\ (0.11) \end{array}$	$\begin{array}{c} 0.12 \\ (0.99) \end{array}$	$-0.07 \\ (-0.53)$	$-0.06 \\ (-0.46)$	$-0.15 \\ (-0.84)$	-0.37 (-2.14)	$-0.82 \\ (-3.22)$	$-1.25 \ (-3.38)$
Q	α	$\begin{array}{c} 0.34 \\ (1.70) \end{array}$	$\begin{array}{c} 0.17 \\ (1.24) \end{array}$	$\begin{array}{c} 0.22\\ (1.82) \end{array}$	$\begin{array}{c} 0.04 \\ (0.26) \end{array}$	$\begin{array}{c} 0.13 \\ (0.94) \end{array}$	$\begin{array}{c} 0.03 \\ (0.22) \end{array}$	$\begin{array}{c} 0.01 \\ (0.08) \end{array}$	$-0.03 \\ (-0.20)$	$-0.23 \\ (-1.45)$	-0.51 (-1.92)	-0.84 (-2.41)
FF5	α	0.25 (1.34)	0.16 (1.23)	0.10 (1.02)	-0.03 (-0.26)	0.10 (0.94)	-0.03 (-0.28)	0.04 (0.30)	0.00 (0.02)	-0.17 (-1.20)	-0.46 (-2.07)	-0.71 (-2.29)
	$\beta_{\rm MKT}$	1.10 (19.41)	$1.02 \\ (19.02)$	0.94 (26.00)	$0.91 \\ (17.56)$	1.01 (28.59)	$0.96 \\ (24.93)$	1.00 (28.33)	1.06 (20.53)	1.19 (21.39)	1.25 (15.96)	$0.16 \\ (1.39)$
	$\beta_{\rm SMB_5}$	$\begin{array}{c} 0.02 \\ (0.24) \end{array}$	-0.19 (-2.35)	$-0.03 \\ (-0.46)$	$-0.00 \\ (-0.04)$	-0.04 (-0.85)	$0.05 \\ (1.13)$	$\begin{array}{c} 0.02 \\ (0.29) \end{array}$	$\begin{array}{c} 0.13 \\ (2.11) \end{array}$	$ \begin{array}{c} 0.24 \\ (2.72) \end{array} $	$\begin{array}{c} 0.37 \\ (3.00) \end{array}$	$\begin{array}{c} 0.35 \\ (2.00) \end{array}$
	$\beta_{\rm HML}$	$\begin{array}{c} 0.09 \\ (0.86) \end{array}$	$\begin{array}{c} 0.10 \\ (0.90) \end{array}$	$-0.06 \\ (-0.85)$	$\begin{array}{c} 0.03 \\ (0.35) \end{array}$	$-0.05 \ (-0.66)$	-0.12 (-1.93)	-0.13 (-1.94)	-0.01 (-0.05)	$\begin{array}{c} 0.07 \\ (0.57) \end{array}$	$-0.10 \\ (-0.59)$	-0.19 (-0.77)
	$\beta_{\rm RMW}$	$\begin{array}{c} 0.10 \\ (0.60) \end{array}$	$\begin{array}{c} 0.01 \\ (0.08) \end{array}$	$0.16 \\ (1.98)$	$\begin{array}{c} 0.05 \\ (0.82) \end{array}$	-0.01 (-0.13)	$0.01 \\ (0.11)$	-0.18 (-2.13)	-0.28 (-2.68)	-0.25 (-1.75)	$-0.75 \ (-6.05)$	-0.85 (-3.26)
	$\beta_{\rm CMA}$	$\begin{array}{c} 0.39 \\ (1.63) \end{array}$	0.38 (1.61)	$\begin{array}{c} 0.23 \\ (2.36) \end{array}$	0.03 (0.19)	$0.02 \\ (0.17)$	-0.16 (-1.08)	-0.14 (-1.01)	-0.29 (-1.74)	-0.61 (-3.81)	-0.60 (-2.75)	$-0.99 \\ (-2.39)$
Pre-Formation	β^{BEAR}	-0.58	-0.32	-0.19	-0.09	0.00	0.09	0.19	0.30	0.45	0.78	1.35
Post-Formation	$\beta^{\rm BEAR}$	-0.04 (-1.44)	-0.02 (-0.82)	-0.03 (-1.41)	-0.03 (-1.91)	0.00 (0.18)	-0.01 (-0.62)	$\begin{array}{c} 0.03 \\ (1.43) \end{array}$	$\begin{array}{c} 0.10 \\ (2.74) \end{array}$	$\begin{array}{c} 0.16 \\ (3.74) \end{array}$	$\begin{array}{c} 0.18 \\ (3.20) \end{array}$	$\begin{array}{c} 0.21 \\ (2.83) \end{array}$

Panel A: All Stocks Sample

			P	anel I	o: ridi	na sa	mple					
Model	Value	$eta^{ ext{BEAR}}$ 1	eta^{BEAR} 2	$eta^{ ext{BEAR}}$ 3	eta^{BEAR} 4	eta^{BEAR} 5	eta^{BEAR} 6	β^{BEAR} 7	β^{BEAR} 8	β^{BEAR} 9	β^{BEAR} 10	β^{BEAR} 10-1
Excess Return	Excess Returns	$ \begin{array}{c} 0.92 \\ (2.45) \end{array} $	$ \begin{array}{c} 0.81 \\ (2.70) \end{array} $	0.68 (2.26)	$ \begin{array}{c} 0.59 \\ (2.08) \end{array} $	$0.60 \\ (1.70)$	0.41 (1.06)	$\begin{array}{c} 0.39 \\ (0.99) \end{array}$	$ \begin{array}{c} 0.44 \\ (0.98) \end{array} $	$ \begin{array}{c} 0.23 \\ (0.48) \end{array} $	-0.16 (-0.24)	-1.08 (-2.41)
CAPM	α	$\begin{array}{c} 0.44 \\ (2.29) \end{array}$	$\begin{array}{c} 0.37 \\ (2.38) \end{array}$	$\begin{array}{c} 0.23 \\ (1.81) \end{array}$	$0.15 \\ (1.16)$	$\begin{array}{c} 0.10 \\ (0.92) \end{array}$	-0.15 (-1.06)	-0.19 (-1.32)	$-0.18 \\ (-0.93)$	$-0.50 \\ (-2.39)$	-1.04 (-3.46)	-1.48 (-3.48)
FF3	α	$\begin{array}{c} 0.37 \\ (2.28) \end{array}$	$\begin{array}{c} 0.34 \\ (2.52) \end{array}$	$\begin{array}{c} 0.21 \\ (1.84) \end{array}$	$\begin{array}{c} 0.12 \\ (1.16) \end{array}$	$\begin{array}{c} 0.11 \\ (0.99) \end{array}$	$-0.08 \\ (-0.65)$	-0.14 (-1.09)	-0.13 (-0.84)	$-0.46 \\ (-2.62)$	$-0.95 \\ (-3.83)$	-1.33 (-4.02)
FFC	α	$\begin{array}{c} 0.41 \\ (2.26) \end{array}$	$\begin{array}{c} 0.36\\ (2.52) \end{array}$	$\begin{array}{c} 0.19 \\ (1.51) \end{array}$	$\begin{array}{c} 0.11 \\ (0.99) \end{array}$	$\begin{array}{c} 0.13 \\ (0.98) \end{array}$	$-0.04 \\ (-0.26)$	$-0.12 \\ (-0.86)$	$-0.05 \ (-0.34)$	$-0.39 \\ (-2.15)$	-0.81 (-3.07)	$-1.22 \\ (-3.38)$
Q	α	$\begin{array}{c} 0.32\\ (1.84) \end{array}$	$0.26 \\ (1.81)$	$\begin{array}{c} 0.11 \\ (0.92) \end{array}$	$0.05 \\ (0.41)$	$\begin{array}{c} 0.13 \\ (0.93) \end{array}$	$\begin{array}{c} 0.03 \\ (0.18) \end{array}$	-0.04 (-0.34)	$\begin{array}{c} 0.05 \\ (0.29) \end{array}$	-0.24 (-1.34)	$-0.52 \\ (-1.87)$	-0.85 (-2.49)
FF5	α	0.23 (1.35)	0.22 (1.74)	0.04 (0.44)	0.02 (0.16)	0.11 (0.97)	-0.04 (-0.30)	0.01 (0.12)	0.08 (0.57)	-0.23 (-1.44)	-0.47 (-2.06)	-0.70 (-2.39)
	$\beta_{\rm MKT}$	1.05 (18.43)	0.96 (22.61)	1.01 (22.85)	0.93 (41.99)	0.98 (25.34)	1.03 (25.98)	1.01 (31.83)	1.04 (18.36)	1.21 (20.18)	1.31 (16.12)	0.27 (2.26)
	$\beta_{\rm SMB_5}$	$-0.06 \\ (-0.70)$	-0.17 (-2.36)	-0.16 (-2.27)	-0.02 (-0.26)	-0.05 (-1.14)	-0.01 (-0.26)	-0.03 (-0.64)	$\begin{array}{c} 0.04 \\ (0.64) \end{array}$	$\begin{array}{c} 0.22 \\ (2.34) \end{array}$	$\begin{array}{c} 0.26 \\ (1.82) \end{array}$	$ \begin{array}{c} 0.32 \\ (1.72) \end{array} $
	$\beta_{\rm HML}$ $\beta_{\rm RMW}$	0.07 (0.66) 0.11	0.07 (0.65) 0.07	-0.02 (-0.16) 0.20	0.03 (0.40) 0.17	$\begin{array}{c} 0.05 \\ (0.75) \\ 0.05 \end{array}$	-0.15 (-2.33) 0.05	-0.06 (-1.06) -0.20	-0.01 (-0.11) -0.25	0.04 (0.26) -0.23	-0.07 (-0.41) -0.72	-0.14 (-0.56) -0.82
	$\beta_{\rm RMW}$ $\beta_{\rm CMA}$	(0.63) 0.39	(0.68) 0.33	(2.97) 0.32	(2.97) 0.13	(0.83) -0.11	(0.67) -0.24	(-2.40) -0.25	(-2.08) -0.40	(-1.36) -0.58	(-5.27) -0.70	(-3.10) -1.08
Pre-Formation	β^{BEAR}	(1.48) -0.51	(1.94) -0.28	(2.10) -0.16	(2.06) -0.07	(-0.93) 0.02	(-1.61) 0.10	(-1.93) 0.19	(-1.99) 0.30	(-3.53) 0.45	(-3.10) 0.76	(-2.42) 1.27
Post-Formation	β^{BEAR}	-0.04 (-1.22)	-0.04 (-1.52)	-0.05 (-2.09)	-0.02 (-1.24)	-0.04 (-2.01)	-0.01 (-0.46)	0.01 (0.69)	0.10 (2.08)	0.16 (3.52)	0.19 (3.35)	0.22 (2.81)
			. ,	. ,	Large		. ,	. ,				
Model	Value	$eta^{ ext{BEAR}}$ 1	$eta^{ m BEAR}$ 2	$eta^{ ext{BEAR}}$ 3	$eta^{ ext{BEAR}}$ 4	$eta^{ ext{BEAR}}$ 5	$eta^{ m BEAR}~6$	$eta^{ ext{BEAR}}$ 7	$eta^{ ext{BEAR}}$ 8	$eta_{ m BEAR}~9$	eta^{BEAR} 10	eta^{BEAR} 10-1
Excess Return	Excess Returns	0.81 (2.31)	0.83 (2.70)	0.65 (2.37)	0.61 (2.01)	0.63 (1.99)	0.60 (1.79)	0.39 (1.03)	0.20 (0.49)	0.35 (0.74)	-0.15 (-0.24)	-0.95 (-2.24)
CAPM	α	0.34 (2.00)	0.39 (2.79)	0.24 (1.51)	0.17 (1.40)	0.18 (1.17)	0.10 (1.11)	-0.17 (-1.12)	-0.38 (-2.22)	-0.33 (-1.58)	-0.99 (-3.27)	-1.33 (-3.21)
FF3	α	$\begin{array}{c} 0.29\\ (2.05) \end{array}$	0.38 (2.86)	0.21 (1.73)	0.16 (1.39)	0.16 (1.24)	0.10 (1.08)	$-0.09 \\ (-0.67)$	-0.32 (-2.21)	-0.26 (-1.54)	-0.88 (-3.75)	-1.17 (-3.88)
FFC	α	$\begin{array}{c} 0.31 \\ (2.00) \end{array}$	$\begin{array}{c} 0.37 \\ (2.55) \end{array}$	$0.18 \\ (1.37)$	0.14 (1.15)	0.12 (0.97)	$0.08 \\ (0.82)$	$-0.09 \\ (-0.54)$	-0.29 (-2.02)	-0.22 (-1.17)	-0.77 (-3.13)	-1.08 (-3.37)
Q	α	$0.22 \\ (1.47)$	$0.26 \\ (1.90)$	$0.08 \\ (0.71)$	$\begin{array}{c} 0.06 \\ (0.50) \end{array}$	$\begin{array}{c} 0.03 \\ (0.20) \end{array}$	$\begin{array}{c} 0.08 \\ (0.83) \end{array}$	$-0.06 \\ (-0.38)$	$-0.20 \\ (-1.25)$	$-0.05 \ (-0.28)$	$-0.50 \\ (-1.94)$	-0.72 (-2.41)
FF5	α	0.15	0.05					0.05	-0.15	-0.02	-0.40	-0.55
		(1.03)	0.25 (1.80)	$\begin{array}{c} 0.05 \\ (0.50) \end{array}$	0.04 (0.31)	0.03 (0.26)	$0.06 \\ (0.67)$	-0.05 (-0.33)	(-1.18)	(-0.11)	(-1.94)	(-2.17)
	$\beta_{\rm MKT}$									(-0.11) 1.13 (18.31)	(-1.94) 1.26 (16.12)	(-2.17) 0.24 (2.18)
	$\beta_{ m MKT}$ $\beta_{ m SMB_5}$	$\begin{array}{c} (1.03) \\ 1.02 \\ (20.24) \\ -0.11 \\ (-1.33) \end{array}$	$\begin{array}{c} (1.80) \\ 0.97 \\ (21.57) \\ -0.21 \\ (-3.32) \end{array}$	$\begin{array}{c} (0.50) \\ 0.94 \\ (35.84) \\ -0.15 \\ (-3.00) \end{array}$	$\begin{array}{c} (0.31) \\ 0.95 \\ (25.67) \\ -0.16 \\ (-3.30) \end{array}$	$\begin{array}{c} (0.26) \\ 0.95 \\ (29.87) \\ -0.02 \\ (-0.35) \end{array}$	$\begin{array}{c} (0.67) \\ 0.97 \\ (35.55) \\ 0.04 \\ (0.84) \end{array}$	(-0.33) 1.03 (20.73) -0.09 (-1.71)	(-1.18) 1.00 (21.29) -0.04 (-0.64)	$ \begin{array}{c} 1.13 \\ (18.31) \\ 0.02 \\ (0.33) \end{array} $	$ \begin{array}{c} 1.26 \\ (16.12) \\ 0.10 \\ (0.75) \end{array} $	$\begin{array}{c} 0.24 \\ (2.18) \\ 0.21 \\ (1.15) \end{array}$
	$eta_{ m MKT}$ $eta_{ m SMB_5}$ $eta_{ m HML}$	$\begin{array}{c} (1.03) \\ 1.02 \\ (20.24) \\ -0.11 \\ (-1.33) \\ 0.08 \\ (0.72) \end{array}$	$\begin{array}{c} (1.80) \\ 0.97 \\ (21.57) \\ -0.21 \\ (-3.32) \\ 0.03 \\ (0.30) \end{array}$	$\begin{array}{c} (0.50) \\ 0.94 \\ (35.84) \\ -0.15 \\ (-3.00) \\ 0.07 \\ (0.98) \end{array}$	$\begin{array}{c} (0.31) \\ 0.95 \\ (25.67) \\ -0.16 \\ (-3.30) \\ 0.05 \\ (0.69) \end{array}$	$\begin{array}{c} (0.26) \\ 0.95 \\ (29.87) \\ -0.02 \\ (-0.35) \\ -0.03 \\ (-0.39) \end{array}$	$\begin{array}{c} (0.67) \\ 0.97 \\ (35.55) \\ 0.04 \\ (0.84) \\ -0.00 \\ (-0.07) \end{array}$	$\begin{array}{c} (-0.33) \\ 1.03 \\ (20.73) \\ -0.09 \\ (-1.71) \\ -0.14 \\ (-2.32) \end{array}$	$\begin{array}{c} (-1.18) \\ 1.00 \\ (21.29) \\ -0.04 \\ (-0.64) \\ -0.06 \\ (-0.61) \end{array}$	$\begin{array}{c} 1.13 \\ (18.31) \\ 0.02 \\ (0.33) \\ 0.00 \\ (0.02) \end{array}$	$\begin{array}{c} 1.26 \\ (16.12) \\ 0.10 \\ (0.75) \\ -0.08 \\ (-0.48) \end{array}$	$\begin{array}{c} 0.24 \\ (2.18) \\ 0.21 \\ (1.15) \\ -0.16 \\ (-0.64) \end{array}$
	$eta_{ m MKT}$ $eta_{ m SMB_5}$ $eta_{ m HML}$ $eta_{ m RMW}$	$\begin{array}{c} (1.03) \\ 1.02 \\ (20.24) \\ -0.11 \\ (-1.33) \\ 0.08 \\ (0.72) \\ 0.13 \\ (0.81) \end{array}$	$\begin{array}{c} (1.80) \\ 0.97 \\ (21.57) \\ -0.21 \\ (-3.32) \\ 0.03 \\ (0.30) \\ 0.12 \\ (1.66) \end{array}$	$\begin{array}{c} (0.50) \\ 0.94 \\ (35.84) \\ -0.15 \\ (-3.00) \\ 0.07 \\ (0.98) \\ 0.26 \\ (3.60) \end{array}$	$\begin{array}{c} (0.31) \\ 0.95 \\ (25.67) \\ -0.16 \\ (-3.30) \\ 0.05 \\ (0.69) \\ 0.16 \\ (2.37) \end{array}$	$\begin{array}{c} (0.26) \\ 0.95 \\ (29.87) \\ -0.02 \\ (-0.35) \\ -0.03 \\ (-0.39) \\ 0.19 \\ (2.96) \end{array}$	$\begin{array}{c} (0.67) \\ 0.97 \\ (35.55) \\ 0.04 \\ (0.84) \\ -0.00 \\ (-0.07) \\ 0.11 \\ (2.16) \end{array}$	$\begin{array}{c} (-0.33) \\ 1.03 \\ (20.73) \\ -0.09 \\ (-1.71) \\ -0.14 \\ (-2.32) \\ 0.01 \\ (0.11) \end{array}$	$\begin{array}{c} (-1.18) \\ 1.00 \\ (21.29) \\ -0.04 \\ (-0.64) \\ -0.06 \\ (-0.61) \\ -0.23 \\ (-2.02) \end{array}$	$\begin{array}{c} 1.13 \\ (18.31) \\ 0.02 \\ (0.33) \\ 0.00 \\ (0.02) \\ -0.30 \\ (-2.21) \end{array}$	$\begin{array}{c} 1.26 \\ (16.12) \\ 0.10 \\ (0.75) \\ -0.08 \\ (-0.48) \\ -0.73 \\ (-5.39) \end{array}$	$\begin{array}{c} 0.24 \\ (2.18) \\ 0.21 \\ (1.15) \\ -0.16 \\ (-0.64) \\ -0.86 \\ (-3.34) \end{array}$
	$eta_{ m MKT}$ $eta_{ m SMB_5}$ $eta_{ m HML}$	$\begin{array}{c} (1.03) \\ 1.02 \\ (20.24) \\ -0.11 \\ (-1.33) \\ 0.08 \\ (0.72) \\ 0.13 \end{array}$	$\begin{array}{c} (1.80) \\ 0.97 \\ (21.57) \\ -0.21 \\ (-3.32) \\ 0.03 \\ (0.30) \\ 0.12 \end{array}$	$\begin{array}{c} (0.50) \\ 0.94 \\ (35.84) \\ -0.15 \\ (-3.00) \\ 0.07 \\ (0.98) \\ 0.26 \end{array}$	$\begin{array}{c} (0.31) \\ 0.95 \\ (25.67) \\ -0.16 \\ (-3.30) \\ 0.05 \\ (0.69) \\ 0.16 \end{array}$	$\begin{array}{c} (0.26) \\ 0.95 \\ (29.87) \\ -0.02 \\ (-0.35) \\ -0.03 \\ (-0.39) \\ 0.19 \end{array}$	$\begin{array}{c} (0.67) \\ 0.97 \\ (35.55) \\ 0.04 \\ (0.84) \\ -0.00 \\ (-0.07) \\ 0.11 \end{array}$	$\begin{array}{c} (-0.33) \\ 1.03 \\ (20.73) \\ -0.09 \\ (-1.71) \\ -0.14 \\ (-2.32) \\ 0.01 \end{array}$	$\begin{array}{c} (-1.18) \\ 1.00 \\ (21.29) \\ -0.04 \\ (-0.64) \\ -0.06 \\ (-0.61) \\ -0.23 \end{array}$	$\begin{array}{c} 1.13 \\ (18.31) \\ 0.02 \\ (0.33) \\ 0.00 \\ (0.02) \\ -0.30 \end{array}$	$\begin{array}{c} 1.26 \\ (16.12) \\ 0.10 \\ (0.75) \\ -0.08 \\ (-0.48) \\ -0.73 \end{array}$	$\begin{array}{c} 0.24 \\ (2.18) \\ 0.21 \\ (1.15) \\ -0.16 \\ (-0.64) \\ -0.86 \end{array}$
Pre-Formation	$eta_{ m MKT}$ $eta_{ m SMB_5}$ $eta_{ m HML}$ $eta_{ m RMW}$	$\begin{array}{c} (1.03) \\ 1.02 \\ (20.24) \\ -0.11 \\ (-1.33) \\ 0.08 \\ (0.72) \\ 0.13 \\ (0.81) \\ 0.35 \end{array}$	$\begin{array}{c} (1.80) \\ 0.97 \\ (21.57) \\ -0.21 \\ (-3.32) \\ 0.03 \\ (0.30) \\ 0.12 \\ (1.66) \\ 0.31 \end{array}$	$\begin{array}{c} (0.50) \\ 0.94 \\ (35.84) \\ -0.15 \\ (-3.00) \\ 0.07 \\ (0.98) \\ 0.26 \\ (3.60) \\ 0.20 \end{array}$	$\begin{array}{c} (0.31) \\ 0.95 \\ (25.67) \\ -0.16 \\ (-3.30) \\ 0.05 \\ (0.69) \\ 0.16 \\ (2.37) \\ 0.20 \end{array}$	$\begin{array}{c} (0.26) \\ 0.95 \\ (29.87) \\ -0.02 \\ (-0.35) \\ -0.03 \\ (-0.39) \\ 0.19 \\ (2.96) \\ 0.19 \end{array}$	$\begin{array}{c} (0.67) \\ 0.97 \\ (35.55) \\ 0.04 \\ (0.84) \\ -0.00 \\ (-0.07) \\ 0.11 \\ (2.16) \\ -0.05 \end{array}$	$\begin{array}{c} (-0.33) \\ 1.03 \\ (20.73) \\ -0.09 \\ (-1.71) \\ -0.14 \\ (-2.32) \\ 0.01 \\ (0.11) \\ -0.19 \end{array}$	$\begin{array}{c} (-1.18) \\ 1.00 \\ (21.29) \\ -0.04 \\ (-0.64) \\ -0.06 \\ (-0.61) \\ -0.23 \\ (-2.02) \\ -0.25 \end{array}$	$\begin{array}{c} 1.13 \\ (18.31) \\ 0.02 \\ (0.33) \\ 0.00 \\ (0.02) \\ -0.30 \\ (-2.21) \\ -0.48 \end{array}$	$\begin{array}{c} 1.26 \\ (16.12) \\ 0.10 \\ (0.75) \\ -0.08 \\ (-0.48) \\ -0.73 \\ (-5.39) \\ -0.65 \end{array}$	$\begin{array}{c} 0.24 \\ (2.18) \\ 0.21 \\ (1.15) \\ -0.16 \\ (-0.64) \\ -0.86 \\ (-3.34) \\ -1.00 \end{array}$

Table 5: β^{BEAR} -Sorted Portfolios Returns - continued

Table 6: β^{BEAR} -Sorted Portfolio Average Risk Variables

The table below presents average values of risk variables for stocks in each of the univariate decile portfolios formed by sorting on β^{BEAR} . Each month t, all stocks in the sample are sorted into decile portfolios based on an ascending sort of β^{BEAR} . The columns labeled β^{BEAR} 1 through β^{BEAR} 10 present results for the first through 10th decile β^{BEAR} portfolios. The table shows the time-series average of the monthly equal-weighted month t values for each risk variable in each portfolio. Results for β^{JUMP} and β^{VOL} cover the 184 months t from December 1996 through March 2012. Results for $\beta^{\Delta\text{SKEW}}$ cover the 133 months t from December 1996 through December 2007. All other results for the 225 months t from December 1996 through August 2015. Panels A, B, and C present results for the All Stocks, Liquid, and Large Cap samples, respectively.

			Panel	A: All	Stocks	Sample	е			
		2	3	4	Ŋ	0	-1	∞	6	10
	AR	AR	AR	AR						
Variable	eta_{BEAR}	eta_{BEAR}	eta^{BEAR}	$eta_{ ext{BEAR}}$	$eta_{ ext{BEAR}}$	eta^{BEAR}	eta^{BEAR}	eta^{BEAR}	$eta^{ ext{BEAR}}$	$eta^{ ext{BEAR}}$
β^{CAPM}	0.77	0.76	0.75	0.76	0.77	0.81	0.86	0.93	1.01	1.14
β^{-}	0.96	0.87	0.84	0.83	0.84	0.86	0.90	0.96	1.03	1.13
$\beta^ \beta^{\text{CAPM}}$	0.19	0.12	0.09	0.07	0.06	0.05	0.04	0.03	0.02	-0.02
$\beta^{\Delta \text{VIX}}$	-0.04	-0.01	-0.01	0.01	0.01	0.02	0.03	0.05	0.06	0.11
β^{VOL}	-0.07	-0.03	-0.02	-0.00	0.01	0.02	0.03	0.05	0.06	0.10
$\beta^{ m JUMP}$	-0.07	-0.04	-0.03	-0.02	-0.02	-0.01	-0.00	0.01	0.02	0.05
COSKEW	-1.88	-1.39	-1.21	-0.99	-0.80	-0.78	-0.69	-0.61	-0.48	-0.11
$\beta^{\Delta \mathrm{SKEW}}$	0.11	0.07	0.10	-0.08	-0.14	-0.14	-0.08	-0.12	-0.10	-0.38
β^{TAIL}	0.31	0.27	0.25	0.23	0.23	0.23	0.24	0.24	0.24	0.25
IVOL	3.74	3.18	2.93	2.82	2.79	2.86	2.97	3.15	3.38	3.94
			Pan	el B: L	iquid S	ample				
		7	3	4	r.	9	-1	∞	6	10
	AR	AR	AR	AR						
N 7 · 11	$eta_{ ext{BEAR}}$	$eta_{ ext{BEAR}}$	$eta_{ ext{BEAR}}$	$eta_{ ext{BEAR}}$	$eta_{ m BEAR}$	$eta_{ m BEAR}$	$eta_{ m BEAR}$	$eta_{ ext{BEAR}}$	$eta_{ ext{BEAR}}$	$eta^{ ext{BEAR}}$
$\frac{\text{Variable}}{\beta^{\text{CAPM}}}$										
1	1.07	1.00	0.98	0.97	0.99	1.03	1.08	1.16	1.26	1.44
β^-	1.18	1.05	1.02	1.00	1.01	1.04	1.08	1.16	1.25	1.39
$\beta^ \beta^{\text{CAPM}}$ $\beta^{\Delta \text{VIX}}$	0.10	0.06	0.04	0.03	0.02	0.01	0.01	0.00	-0.01	-0.05
β^{VOL}	-0.02	-0.01	-0.00	0.01	0.01	0.02	0.03	0.06	0.07	0.13
β^{VOL} β^{JUMP}	-0.05	-0.02	-0.02	-0.01	-0.00	0.01	0.02	0.03	0.04	0.09
1-	-0.05	-0.03	-0.02	-0.01	-0.01	-0.00	0.00	0.01	0.02	0.05
$\underset{\beta^{\Delta \text{SKEW}}}{\text{COSKEW}}$	-0.66	-0.27	-0.31	-0.25	-0.11	-0.06	0.02	0.16	0.39	0.87
$\beta^{\Delta SKEW}$ β^{TAIL}	0.16	-0.07	-0.04	-0.02	-0.23	-0.09	-0.13	-0.15	-0.14	-0.20
β^{IAL} IVOL	$\begin{array}{c} 0.15 \\ 2.39 \end{array}$	$\begin{array}{c} 0.14 \\ 2.02 \end{array}$	$\begin{array}{c} 0.13 \\ 1.93 \end{array}$	$\begin{array}{c} 0.14 \\ 1.89 \end{array}$	$\begin{array}{c} 0.14 \\ 1.93 \end{array}$	$\begin{array}{c} 0.14 \\ 2.01 \end{array}$	$\begin{array}{c} 0.14 \\ 2.12 \end{array}$	$0.15 \\ 2.29$	$\begin{array}{c} 0.15 \\ 2.53 \end{array}$	$\begin{array}{c} 0.14 \\ 2.99 \end{array}$
	·) ·)()	• • • • • • • • • • • • • • • • • • • •	1 09	1 00	1 09	9 01	0 1 0	·) ·)()	0 5 2	4) (AA

			Panel	C: Lar	·ge Cap	Sampl	e			
	1	2	ŝ	4	Ŋ	9	7	∞	6	10
	AR	AR								
Variable	$eta_{ extbf{BEAR}}$	eta_{BEAR}	$eta_{ ext{BEAR}}$							
β^{CAPM}	1.02	0.93	0.91	0.91	0.93	0.95	1.00	1.06	1.18	1.39
β^{-}	1.11	0.98	0.95	0.94	0.95	0.96	1.00	1.06	1.16	1.35
$\beta^{-} - \beta^{\text{CAPM}}$	0.09	0.04	0.03	0.03	0.02	0.01	0.00	-0.00	-0.01	-0.04
$\beta^{\Delta \text{VIX}}$	-0.03	-0.02	-0.01	-0.01	-0.00	0.00	0.01	0.04	0.05	0.11
β^{VOL}	-0.05	-0.02	-0.02	-0.01	-0.00	0.00	0.01	0.02	0.03	0.07
$\beta^{ m JUMP}$	-0.04	-0.02	-0.02	-0.01	-0.01	-0.00	0.00	0.01	0.02	0.05
COSKEW	-0.23	-0.04	-0.05	-0.07	0.08	0.25	0.33	0.45	0.61	1.31
$\beta^{\Delta \text{SKEW}}$	-0.02	-0.17	-0.24	-0.16	-0.13	-0.23	-0.13	-0.14	-0.17	-0.31
β^{TAIL}	0.09	0.09	0.10	0.10	0.10	0.10	0.11	0.10	0.10	0.08
IVOL	1.96	1.65	1.59	1.56	1.60	1.63	1.71	1.83	2.04	2.46

Table 6: β^{BEAR} -Sorted Portfolio Average Risk Variables - continued

Table 7: Bivariate β^{BEAR} -Sorted Portfolios-Sorted Portfolios

The table below presents the results of bivariate portfolio analyses using a control variable and β^{BEAR} as the sort variables. The control variable is one of β^{CAPM} , β^{-} , $\beta^{-} - \beta^{\text{CAPM}}$, $\beta^{\Delta \text{VIX}}$ β^{VOL} , β^{JUMP} , COSKEW, $\beta^{\Delta \text{SKEW}}$, β^{TAIL} , or IVOL. Each month t, all stocks in the sample are sorted into decile groups based on an ascending sort on the control variable. Within each control variable group, the stocks are sorted into decile portfolios based on an ascending sort on β^{BEAR} . The monthly value-weighted excess returns for each of the resulting 100 portfoliosare calculated. Within each β^{BEAR} decile, we then calculate the equal-weighted average of the portfolio excess returns across the deciles of the control variable, which we refer to as the bivariate β^{BEAR} decile portfolios. The β^{BEAR} 10–1 portfolio is a zero-investment portfolio that is long the bivariate β^{BEAR} decile 10 portfolio and short the bivariate β^{BEAR} decile one portfolio. The table presents the timeseries averages of the month t + 1 excess returns for the bivariate β^{BEAR} decile portfolios. For the β^{BEAR} 10 – 1 portfolios, the table shows the time-series averages of the month t+1 excess returns, alphas (α) relative to the CAPM, FF3, FFC, Q, and FF5 factor models, and factor sensitivities relative to the FF5 factors. t-statistics, adjusted following Newey and West (1987) using three lags are presented in parentheses. The analyses that control for β^{JUMP} or β^{VOL} cover the cover the 184 months t (return months t + 1) from December 1996 (January 1997) through March 2012 (April 2012). The analysis that controls for $\beta^{\Delta SKEW}$ covers the cover the 133 months t (return months t + 1 from December 1996 (January 1997) through December 2007 (January 2008). All other analyses cover the 225 months t (return months t+1) from December 1996 (January 1997) through August 2015 (September 2015). Panels A, B, and C present results for the All Stocks, Liquid, and Large Cap samples, respectively.

					Av£				ß			
	Model	Value	$\beta^{\mathrm{CAPM}} \mathrm{Avg}$	β^- Avg	$eta^ eta^{ ext{CAPM}}$ Avg	$\beta^{\Delta \mathrm{VIX}} \mathrm{Avg}$	β^{VOL} Avg	$eta^{\mathrm{JUMP}}\mathrm{Avg}$	COSKEW Avg	$\beta^{\Delta \mathrm{SKEW}}$ Avg	β^{TAIL} Avg	IVOL Avg
BEAR 1	Excess Return	Excess Return	0.83	0.86	0.90	0.97	0.89	0.98	1.10	1.22	1.05	0.89
BEAR 2			0.60	0.69	0.80	0.80	0.69	0.75	0.77	0.57	0.84	0.77
BEAR 3			0.59	0.66	0.75	0.66	0.65	0.53	0.83	0.76	0.66	0.42
BEAR 4			0.61	0.46	0.67	0.66	0.62	0.78	0.66	0.54	0.63	0.48
BEAR 5			0.69	0.66	0.47	0.44	0.54	0.41	0.60	0.37	0.69	0.58
BEAR 6			0.57	0.60	0.53	0.67	0.71	0.52	0.74	0.72	0.66	0.56
BEAR 7 BEAR 8			0.67	0.70	0.71	0.55	0.65	0.44	0.57	0.60	0.62	0.68
BEAR 9			0.45	0.45	0.44	0.45	0.15	0.42	0.44	0.33	0.63	0.54
β^{BEAR} 10			$0.48 \\ 0.16$	$0.47 \\ 0.17$	$0.47 \\ -0.07$	$0.40 \\ -0.08$	$0.24 \\ -0.28$	$0.16 \\ -0.16$	$0.51 \\ 0.02$	$0.19 \\ -0.43$	$0.48 \\ 0.20$	$0.28 \\ -0.0$
$_{\rm BEAR}$ 10-1	Excess Return	Excess Returns	-0.67 (-2.78)	$-0.69 \\ (-3.00)$	-0.97 (-2.55)	-1.05 (-2.66)	-1.17 (-2.62)	-1.14 (-2.64)	$-1.07 \\ (-3.06)$	-1.65 (-2.58)	-0.84 (-2.75)	-0.9 (-2.4)
	CAPM	α	$-0.79 \\ (-3.20)$	$-0.83 \\ (-3.49)$	$-1.26 \\ (-3.25)$	$-1.35 \ (-3.38)$	$-1.41 \\ (-3.11)$	$-1.37 \\ (-3.22)$	$-1.35 \\ (-3.82)$	$-2.02 \\ (-3.36)$	$-1.11 \\ (-3.84)$	$-1.1 \\ (-3.0)$
	FF3	α	-0.74 (-3.13)	$-0.79 \\ (-3.84)$	$-1.13 \\ (-3.78)$	$-1.22 \\ (-3.88)$	$-1.29 \\ (-3.45)$	$-1.24 \\ (-3.73)$	$-1.23 \\ (-4.25)$	-1.34 (-2.86)	$-1.02 \\ (-4.03)$	-1.0 (-3.3)
	FFC	α	-0.79 (-3.14)	$-0.76 \\ (-3.27)$	-1.05 (-3.12)	$-1.20 \\ (-3.48)$	$-1.25 \\ (-3.22)$	$-1.28 \\ (-3.77)$	$-1.17 \\ (-3.48)$	$-1.48 \\ (-2.81)$	$-0.93 \\ (-3.18)$	-0.9 (-2.9
	Q	α	$-0.55 \\ (-2.28)$	-0.56 (-2.40)	-0.73 (-2.41)	-0.79 (-2.24)	-0.87 (-2.34)	$-0.93 \\ (-2.90)$	-0.83 (-2.51)	-1.24 (-2.34)	-0.67 (-2.51)	-0.7 (-2.2)
	FF5	α	-0.55 (-2.32)	-0.58 (-2.71)	-0.68 (-2.50)	-0.69 (-2.39)	-0.71 (-2.08)	-0.76 (-2.39)	-0.82 (-2.89)	-0.95 (-2.23)	-0.61 (-2.39)	-0.6 (-2.4
		$\beta_{\rm MKT}$	$-0.03 \\ (-0.46)$	0.02 (0.22)	0.17 (1.67)	$0.12 \\ (1.07)$	0.15 (1.26)	$\begin{array}{c} 0.15 \\ (1.36) \end{array}$	$\begin{array}{c} 0.15 \\ (1.32) \end{array}$	-0.01 (-0.03)	0.16 (1.87)	0.16 (1.66
		β_{SMB_5}	$\begin{array}{c} 0.47 \\ (3.64) \end{array}$	0.47 (4.02)	$\begin{array}{c} 0.31 \\ (2.08) \end{array}$	$\begin{array}{c} 0.35 \\ (1.93) \end{array}$	$\begin{array}{c} 0.32\\ (1.68) \end{array}$	$\begin{array}{c} 0.35 \\ (2.09) \end{array}$	$\begin{array}{c} 0.38\\ (2.28) \end{array}$	$\begin{array}{c} 0.27 \\ (1.34) \end{array}$	$\begin{array}{c} 0.33 \\ (2.62) \end{array}$	0.18 (1.13)
		$\beta_{ m HML}$	$-0.30 \\ (-1.79)$	$-0.20 \\ (-1.19)$	-0.25 (-1.09)	$-0.20 \\ (-0.79)$	$-0.23 \\ (-0.81)$	$-0.32 \\ (-1.24)$	-0.28 (-1.12)	-0.67 (-2.40)	-0.07 (-0.37)	-0.0 (-0.3)
		$\beta_{ m RMW}$	$-0.29 \\ (-1.61)$	-0.23 (-1.41)	-0.58 (-2.28)	-0.74 (-2.83)	-0.68 (-2.64)	-0.54 (-1.97)	-0.53 (-2.17)	-0.46 (-1.63)	-0.47 (-2.37)	-0.4 (-2.1
		$\beta_{\rm CMA}$	-0.24 (-1.12)	-0.46 (-1.82)	-0.79 (-2.31)	-0.87 (-2.13)	-0.83 (-2.20)	-0.75 (-1.85)	-0.73 (-1.91)	-0.89 (-1.66)	-0.84 (-2.53)	-0.6 (-2.2)

Table 7: Bivariate β^{BEAR} -Sorted Portfolios-Sorted Portfolios - continued

					Avg				00			
	Model	Value	$eta^{ ext{CAPM}} \operatorname{Avg}$	β^- Avg	$\beta^ \beta^{\text{CAPM}}$,	$\beta^{\Delta \text{VIX}}$ Avg	$\beta^{\rm VOL}$ Avg	$\beta^{\mathrm{JUMP}}\mathrm{Avg}$	COSKEW Avg	$\beta^{\Delta \mathrm{SKEW}}$ Avg	β^{TAIL} Avg	IVOL Avg
BEAR 1	Excess Return	Excess Return	0.77	0.82	0.88	0.89	0.90	0.90	0.94	1.03	0.98	0.89
$^{\text{BEAR}} 2$			0.64	0.54	0.84	0.93	0.71	0.82	0.84	0.88	0.89	0.82
BEAR 3			0.64	0.60	0.74	0.59	0.71	0.47	0.80	0.55	0.57	0.67
BEAR 4			0.61	0.45	0.62	0.52	0.65	0.65	0.71	0.53	0.69	0.60
BEAR 5			0.57	0.68	0.56	0.73	0.71	0.63	0.74	0.79	0.64	0.58
BEAR 6			0.54	0.66	0.62	0.54	0.70	0.41	0.67	0.75	0.64	0.55
BEAR 7			0.48	0.57	0.61	0.54	0.36	0.32	0.46	0.41	0.65	0.68
BEAR 8			0.44	0.54	0.41	0.36	0.27	0.33	0.49	0.28	0.57	0.40
^{BEAR} 9 ^{BEAR} 10			$0.47 \\ 0.10$	$0.57 \\ 0.05$	$0.38 \\ -0.06$	$0.44 \\ -0.17$	$0.21 \\ -0.32$	$0.23 \\ -0.12$	$0.43 \\ -0.04$	$0.11 \\ -0.50$	$0.39 \\ 0.18$	$0.36 \\ 0.09$
^{BEAR} 10-1	Excess Return	Excess Returns	-0.67 (-3.21)	-0.77 (-3.25)	$-0.93 \\ (-2.43)$	-1.07 (-2.56)	$-1.21 \\ (-2.60)$	-1.02 (-2.24)	$-0.98 \\ (-2.73)$	-1.53 (-2.43)	$-0.80 \\ (-2.67)$	-0.8 (-2.4)
	CAPM	α	$-0.78 \\ (-3.81)$	$-0.94 \\ (-4.07)$	$-1.26 \\ (-3.36)$	$-1.40 \\ (-3.31)$	$-1.50 \\ (-3.29)$	$-1.27 \\ (-2.78)$	$^{-1.31}_{(-3.94)}$	$-1.92 \\ (-3.23)$	$-1.08 \\ (-3.71)$	-1.0 (-3.1
	FF3	α	$-0.75 \\ (-3.92)$	$-0.92 \\ (-4.40)$	-1.15 (-4.21)	$-1.28 \\ (-4.05)$	$-1.40 \\ (-3.82)$	$-1.12 \\ (-3.47)$	$-1.21 \\ (-4.33)$	$-1.32 \\ (-2.99)$	$-1.00 \\ (-3.98)$	$-0.9 \\ (-3.5)$
	FFC	α	$-0.78 \\ (-3.75)$	$-0.91 \\ (-3.90)$	-1.04 (-3.32)	$-1.18 \\ (-3.39)$	$-1.32 \\ (-3.45)$	-1.14 (-3.36)	$-1.10 \\ (-3.44)$	$-1.41 \\ (-2.77)$	$-0.90 \\ (-3.16)$	-0.9 (-3.1)
	Q	α	-0.69 (-3.10)	$-0.82 \\ (-3.52)$	-0.74 (-2.68)	-0.84 (-2.57)	$-0.93 \\ (-2.75)$	-0.80 (-2.52)	-0.83 (-2.75)	$-1.22 \\ (-2.34)$	$-0.63 \\ (-2.35)$	-0.7 (-2.5)
	FF5	α	-0.70 (-3.31)	-0.81 (-3.95)	-0.67 (-2.82)	-0.78 (-2.85)	-0.75 (-2.40)	-0.65 (-2.17)	-0.79 (-3.06)	-0.92 (-2.23)	-0.58 (-2.38)	-0.6 (-2.6)
		$\beta_{\rm MKT}$	0.07 (1.28)	0.16 (2.29)	$\begin{array}{c} 0.24 \\ (2.54) \end{array}$	0.22 (2.18)	0.23 (1.97)	0.18 (1.68)	0.26 (2.42)	$\begin{array}{c} 0.09 \\ (0.50) \end{array}$	$ \begin{array}{c} 0.22 \\ (2.45) \end{array} $	0.16 (2.30
		$\beta_{{ m SMB}_5}$	$\begin{array}{c} 0.36 \\ (3.85) \end{array}$	$\begin{array}{c} 0.40 \\ (3.36) \end{array}$	$\begin{array}{c} 0.31 \\ (2.14) \end{array}$	$\begin{array}{c} 0.36 \\ (2.04) \end{array}$	$\begin{array}{c} 0.32 \\ (1.70) \end{array}$	$\begin{array}{c} 0.38\\ (2.38) \end{array}$	$\begin{array}{c} 0.35 \\ (2.25) \end{array}$	$\begin{array}{c} 0.31 \\ (1.56) \end{array}$	$\begin{array}{c} 0.23 \\ (1.87) \end{array}$	0.16 (1.14
		$\beta_{ m HML}$	-0.28 (-2.09)	-0.13 (-0.77)	-0.13 (-0.61)	-0.14 (-0.64)	$-0.09 \ (-0.33)$	-0.38 (-1.61)	-0.14 (-0.60)	-0.52 (-1.85)	$\begin{array}{c} 0.03 \\ (0.13) \end{array}$	-0.1 (-0.5)
		$\beta_{ m RMW}$	$-0.09 \\ (-0.59)$	-0.04 (-0.24)	-0.59 (-2.26)	-0.59 (-2.11)	-0.72 (-2.55)	-0.49 (-1.72)	$-0.50 \\ (-2.20)$	-0.44 (-1.60)	-0.42 (-2.24)	-0.4 (-2.0
		$\beta_{\rm CMA}$	-0.04 (-0.21)	-0.37 (-1.19)	-0.89 (-2.61)	-1.01 (-2.80)	-1.00 (-2.49)	-0.78 (-1.91)	-0.80 (-2.20)	-0.95 (-1.74)	-0.95 (-2.73)	-0.4 (-1.8)

Table 7: Bivariate β^{BEAR} -Sorted Portfolios-Sorted Portfolios - continued

					Avg				50			
	Model	Value	$eta^{ ext{CAPM}} ext{ Avg}$	β^- Avg	$\beta^ \beta^{\text{CAPM}} \text{ Av}_{\ell}$	$\beta^{\Delta \text{VIX}}$ Avg	β^{VOL} Avg	$eta^{\mathrm{JUMP}}\mathrm{Avg}$	COSKEW Avg	$\beta^{\Delta \mathrm{SKEW}}$ Avg	β^{TAIL} Avg	IVOL Avg
BEAR 1	Excess Return	Excess Return	0.71	0.70	0.84	0.80	0.81	0.93	0.83	0.88	0.86	0.85
BEAR 2			0.68	0.61	0.87	0.90	0.60	0.54	0.91	0.94	0.86	0.93
BEAR 3			0.58	0.60	0.69	0.74	0.79	0.73	0.71	0.68	0.65	0.73
BEAR 4			0.64	0.58	0.69	0.66	0.54	0.62	0.67	0.60	0.68	0.51
BEAR 5			0.57	0.61	0.47	0.61	0.70	0.61	0.72	0.71	0.63	0.56
BEAR 6			0.53	0.70	0.59	0.59	0.70	0.53	0.58	0.90	0.65	0.50
BEAR 7 BEAR 8			0.55	0.66	0.67	0.52	0.31	0.32	0.69	0.52	0.75	0.74
BEAR 0			0.47	0.41	0.38	0.40	0.16	0.28	0.36	0.32	0.44	0.40
B^{BEAR} 10			$0.57 \\ 0.17$	$0.47 \\ 0.27$	$0.42 \\ 0.02$	$0.34 \\ -0.06$	$0.19 \\ -0.30$	$0.28 \\ 0.00$	$0.45 \\ 0.02$	$0.12 \\ -0.41$	$0.39 \\ 0.20$	$0.29 \\ 0.28$
$^{\rm BEAR}$ 10-1	Excess Return	Excess Returns	$-0.54 \\ (-2.83)$	$-0.43 \\ (-2.04)$	-0.81 (-2.09)	$-0.86 \\ (-2.43)$	-1.11 (-2.47)	$-0.92 \\ (-2.03)$	-0.81 (-2.45)	$-1.29 \\ (-2.20)$	$-0.66 \\ (-2.25)$	-0.5 (-1.8)
	CAPM	α	$-0.66 \\ (-3.52)$	$-0.59 \\ (-2.96)$	$-1.12 \\ (-2.87)$	$-1.16 \\ (-3.26)$	$-1.39 \\ (-3.18)$	-1.17 (-2.68)	-1.14 (-3.56)	-1.67 (-2.94)	$-0.92 \\ (-3.08)$	-0.7 (-2.4)
	FF3	α	$-0.63 \\ (-3.59)$	$-0.56 \\ (-3.31)$	$-1.01 \\ (-3.58)$	$-1.04 \\ (-3.95)$	$^{-1.26}_{(-3.68)}$	$-1.02 \\ (-3.35)$	-1.03 (-4.06)	-1.05 (-2.54)	$-0.81 \\ (-3.53)$	-0.6 (-2.7)
	FFC	α	$-0.65 \\ (-3.56)$	$-0.50 \\ (-2.86)$	$-0.93 \\ (-3.03)$	$-0.96 \\ (-3.40)$	$-1.21 \\ (-3.39)$	$-1.08 \\ (-3.50)$	$-0.93 \\ (-3.45)$	-1.17 (-2.66)	$-0.69 \\ (-2.74)$	-0.6 (-2.5)
	Q	α	$-0.58 \\ (-2.85)$	-0.39 (-2.17)	$-0.59 \\ (-2.26)$	-0.67 (-2.53)	-0.84 (-2.59)	-0.71 (-2.37)	-0.69 (-2.70)	-0.98 (-2.18)	-0.47 (-1.97)	-0.4 (-1.8)
	FF5	α	$-0.58 \\ (-3.04)$	-0.43 (-2.59)	-0.50 (-2.14)	-0.59 (-2.47)	-0.69 (-2.44)	$-0.52 \\ (-2.05)$	-0.64 (-2.74)	-0.67 (-1.78)	-0.44 (-2.02)	-0.3 (-1.7)
		$\beta_{\rm MKT}$	$\begin{array}{c} 0.12 \\ (2.29) \end{array}$	$\begin{array}{c} 0.17 \\ (3.10) \end{array}$	$\begin{array}{c} 0.20\\ (2.30) \end{array}$	$\begin{array}{c} 0.21 \\ (2.26) \end{array}$	$\begin{array}{c} 0.27\\ (2.52) \end{array}$	0.17 (1.83)	$\begin{array}{c} 0.29\\ (2.98) \end{array}$	$\begin{array}{c} 0.10 \\ (0.60) \end{array}$	$\begin{array}{c} 0.23\\ (2.71) \end{array}$	0.16 (2.65
		β_{SMB_5}	0.26 (3.20)	$\begin{array}{c} 0.23 \\ (2.59) \end{array}$	0.21 (1.43)	0.24 (1.52)	0.20 (1.13)	$\begin{array}{c} 0.31 \\ (2.04) \end{array}$	$\begin{array}{c} 0.26 \\ (1.81) \end{array}$	0.24 (1.29)	0.15 (1.22)	0.12 (0.96
		$\beta_{ m HML}$	-0.24 (-1.97)	-0.11 (-0.72)	-0.10 (-0.49)	-0.15 (-0.74)	$-0.13 \\ (-0.51)$	-0.34 (-1.49)	-0.16 (-0.76)	-0.59 (-2.12)	$-0.06 \\ (-0.29)$	-0.1 (-0.8)
		$\beta_{ m RMW}$	-0.12 (-0.80)	-0.13 (-0.86)	-0.72 (-2.92)	-0.59 (-2.31)	-0.65 (-2.42)	-0.58 (-2.21)	-0.47 (-2.32)	-0.47 (-1.61)	-0.34 (-1.93)	-0.4 (-1.8)
		$\beta_{\rm CMA}$	0.01 (0.05)	-0.31 (-1.50)	-0.78 (-2.66)	-0.79 (-2.22)	-0.87 (-2.48)	-0.72 (-1.96)	-0.76 (-2.31)	-0.83 (-1.71)	-0.91 (-2.73)	-0.4 (-2.0)

Table 7: Bivariate β^{BEAR} -Sorted Portfolios-Sorted Portfolios - continued

Table 8: Fama and MacBeth Regression Analyses

The table below presents the results of Fama and MacBeth (1973) regressions of month t + 1stock excess stock returns on month $t \beta^{\text{BEAR}}$ and control variables. The table presents the time-series averages of the monthly cross-sectional regression coefficients. t-statistics, adjusted following Newey and West (1987) using three lags, are presented in parentheses. Also reported are the average adjusted R-squared (Adj. R^2) and the average number of observations (n). All independent variables are winsorized at the 0.5% and 99.5% level on a monthly basis. Each column presents results for a different regression specification. The specification that includes β^{JUMP} and β^{VOL} covers the 184 months t (return months t + 1) from December 1996 (January 1997) through March 2012 (April 2012). The specification that includes $\beta^{\Delta \text{SKEW}}$ covers the 133 months t (return months t + 1) from December 1996 (January 1997) through December 2007 (January 2008). All other specifications cover the 225 months t (return months t + 1) from December 1996 (January 1997) through August 2015 (September 2015). Panels A, B, and C present results for the All Stocks, Liquid, and Large Cap samples, respectively.

Panel A: All	Stocks Sample
--------------	---------------

				Panel A	A: All S	DUOCKS 3	Sample				
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
β^{BEAR}	-0.46	-0.36	-0.37	-0.36	-0.42	-0.42	-0.42	-0.41	-0.34	-0.39	-0.32
	(-2.27)	(-2.06)	(-2.19)	(-2.16)	(-2.22)	(-2.48)	(-1.72)	(-2.58)	(-2.44)	(-3.10)	(-3.08)
β^{CAPM}		-0.15	-0.10	-0.15	-0.07	-0.14	-0.23	-0.12	-0.13	-0.05	0.32
		(-0.56)	(-0.39)	(-0.57)	(-0.23)	(-0.53)	(-0.57)	(-0.46)	(-0.51)	(-0.20)	(1.25)
β^{-}			-0.08							-0.06	-0.12
			(-0.42)							(-0.45)	(-1.02)
$\beta^{\Delta \text{VIX}}$				-0.02						-0.06	-0.05
				(-0.36)						(-1.66)	(-1.33)
β^{JUMP}					0.20						
					(0.41)						
β^{VOL}					0.16						
					(0.75)						
COSKEW						-0.01				-0.01	-0.00
						(-0.96)				(-0.83)	(-0.12)
$\beta^{\Delta SKEW}$							-0.00				
							(-0.24)				
β^{TAIL}								0.11		0.19	0.15
								(0.71)		(1.48)	(1.61)
IVOL									-0.14	-0.12	-0.23
									(-1.99)	(-1.81)	(-5.08)
SIZE											-0.18
											(-2.80)
BM											0.01
											(0.08)
MOM											0.00
											(0.51)
ILLIQ											0.00
											(5.18)
Υ											0.13
											(1.06)
INV											-0.86
											(-5.20)
Intercept	0.85	0.97	0.99	0.97	0.87	1.03	1.07	0.99	1.25	1.21	2.13
	(1.77)	(2.22)	(2.32)	(2.23)	(1.68)	(2.36)	(2.04)	(2.38)	(3.84)	(3.86)	(3.92)
Adj. R^2	0.58%	2.22%	2.45%	2.35%	2.73%	2.32%	2.71%	2.53%	3.68%	4.25%	5.82%
nuj. <i>n</i>	4775	4775	4775	4774	5049 5		5463	4074	4774	4065	3245
	1.10		1.10	****	5	2	0 100			-000	0-10

	Panel B: Liquid Sample													
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)			
β^{BEAR}	-0.68	-0.50	-0.49	-0.50	-0.50	-0.54	-0.64	-0.46	-0.46	-0.40	-0.33			
	(-2.54)	(-2.82)	(-2.77)	(-2.94)	(-2.71)	(-2.97)	(-2.36)	(-2.74)	(-2.81)	(-2.62)	(-2.43)			
β^{CAPM}		0.06	0.17	0.08	0.19	0.10	0.07	0.05	0.17	0.20	0.16			
		(0.14)	(0.45)	(0.19)	(0.38)	(0.24)	(0.13)	(0.13)	(0.46)	(0.56)	(0.51)			
β^{-}			-0.16							-0.11	-0.20			
			(-0.63)							(-0.49)	(-1.03)			
$\beta^{\Delta \text{VIX}}$				-0.10						-0.12	-0.08			
				(-1.42)						(-1.92)	(-1.43)			
β^{JUMP}					0.15									
					(0.20)									
β^{VOL}					-0.07									
,					(-0.29)									
COSKEW					· /	-0.00				0.00	0.00			
						(-0.30)				(0.06)	(0.38)			
$\beta^{\Delta SKEW}$						()	0.01			()	()			
ρ							(0.56)							
β^{TAIL}							(0.00)	0.11		0.10	0.13			
ρ								(0.80)		(0.84)	(1.29)			
WOI								(0.00)	0.16					
IVOL									-0.16 (-2.12)	-0.13 (-1.79)	-0.12			
CITAD.									(-2.12)	(-1.79)	(-2.33)			
SIZE											-0.14			
DI											(-2.00)			
BM											-0.05			
											(-0.59)			
MOM											0.00			
											(0.33)			
ILLIQ											0.27			
											(0.90)			
Υ											0.18			
											(1.26)			
INV											-0.59			
											(-3.56)			
Intercept	0.72	0.71	0.76	0.70	0.53	0.72	0.69	0.75	0.86	0.91	1.82			
_	(1.73)	(2.29)	(2.60)	(2.31)	(1.53)	(2.45)	(1.65)	(2.59)	(2.57)	(3.00)	(2.80)			
Adj. R^2	1.35%	4.94%	5.43%	5.30%	6.14%	5.19%	6.08%	5.33%	5.94%	7.19%	9.77%			
n	2039	2039	2039	2039	2106	1917	2236	1823	2039	1823	1569			

${\bf Table \ 8: \ Fama \ and \ MacBeth \ Regression \ Analyses \ - \ continued}$

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(-2.70) (-2.46) (-2.57) (-2.24) (-2.24)
p 0.000 0.001 0.002 0.000 0.00	(-2.70) (-2.46) (-2.57) (-2.24) (-2.24)
(9.71) (9.92) (9.92) (9.92) (9.92) (9.14) (9.93)	
(-2.71) (-2.83) (-2.86) (-2.93) (-3.14) (-2.81)	
β^{CAPM} 0.10 0.31 0.12 0.20 0.12	0.27 0.08 0.16 0.25 0.33
(0.24) (0.74) (0.30) (0.41) (0.28)	(0.50) (0.19) (0.42) (0.64) (0.89)
β^{-} -0.25	-0.16 -0.33
(-0.91)	(-0.60) (-1.4)
$\beta^{\Delta \text{VIX}}$ -0.07	-0.09 -0.0'
(-0.75)	(-0.96) (-0.76)
$\beta^{ m JUMP}$ -0.59	
(-0.60)	
β^{VOL} 0.20	
(0.56)	
COSKEW -0.01	-0.01 -0.01
(-0.80)	
$\beta \Delta SKEW$ (-0.00	
β = α = α	0.01
β^{TAIL}	(0.59)
βIAL	0.10 0.10 0.14
	(0.65) (0.70) (1.20)
IVOL	-0.09 -0.05 -0.00
	(-1.17) (-0.81) (-1.0)
SIZE	-0.13
	(-2.23)
BM	0.03
	(0.31
MOM	0.00
	(0.73)
ILLIQ	-0.0
	(-0.13
Y	0.23
1	(1.23
INV	-0.4
	(-2.6)
Intercept 0.68 0.63 0.68 0.61 0.45 0.64	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
(1.84) (2.24) (2.53) (2.18) (1.49) (2.36)	(1.11) (2.57) (2.32) (2.58) (3.33)
Adj. R^2 2.11% 7.14% 7.84% 7.67% 8.97% 7.38%	8.98% $7.57%$ $8.01%$ $9.68%$ $13.14%$
n 1005 1005 1005 1005 1022 963	1073 932 1005 932 784

${\bf Table \ 8: \ Fama \ and \ MacBeth \ Regression \ Analyses \ - \ continued}$

Table 9: Fama and MacBeth Regression Analyses - k-Month-Ahead Returns

The table below presents the results of Fama and MacBeth (1973) regression analyses of the relation between future stock excess stock returns and β^{BEAR} and control variables. Each month t we run a cross-sectional regression of month t + k excess stock returns on β^{BEAR} and combinations of the control variables, for $k \in 2, 3, 4, 5, 6$. The table presents the time-series averages of the monthly cross-sectional regression coefficients on β^{BEAR} . t-statistics, adjusted following Newey and West (1987) using three lags, testing the null hypothesis that the average coefficient is equal to zero, are presented in parentheses. Each column presents results for a different regression specification. The specifications used in columns (1)-(11) correspond to the specifications used in the corresponding columns of Table 8. All independent variables are winsorized at the 0.5% and 99.5% level on a monthly basis. The row labeled R_{t+k} presents results using the k-month-ahead excess stock return as the dependent variable. The specification that includes β^{JUMP} and β^{VOL} covers the 184 months t from December 1996 through March 2012. The specification that includes $\beta^{\Delta \text{SKEW}}$ covers the 133 months t from December 1996 through December 2007. All other specifications cover the 225 months t from December 1996 through August 2015. Panels A, B, and C present results for the All Stocks, Liquid, and Large Cap samples, respectively.

			1 and	$\mathbf{H} \mathbf{A} \cdot \mathbf{A}$	in Stot	rs Dai	npie				
Dependent Variable	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
R_{t+2}	-0.55	-0.48	-0.50	-0.48	-0.61	-0.58	-0.49	-0.54	-0.40	-0.48	-0.38
	(-2.90)	(-3.01)	(-3.15)	(-3.04)	(-3.21)	(-3.72)	(-2.42)	(-3.74)	(-3.18)	(-3.98)	(-3.91)
R_{t+3}	-0.59	-0.53	-0.54	-0.52	-0.69	-0.64	-0.61	-0.62	-0.46	-0.56	-0.45
	(-3.18)	(-3.59)	(-3.79)	(-3.55)	(-3.90)	(-4.39)	(-3.36)	(-4.46)	(-3.70)	(-4.67)	(-4.35)
R_{t+4}	-0.63	-0.55	-0.56	-0.54	-0.65	-0.63	-0.55	-0.63	-0.47	-0.55	-0.40
	(-3.35)	(-3.70)	(-3.83)	(-3.71)	(-3.53)	(-4.29)	(-3.17)	(-4.34)	(-3.82)	(-4.34)	(-3.64)
R_{t+5}	-0.60	-0.53	-0.54	-0.53	-0.61	-0.60	-0.51	-0.61	-0.46	-0.55	-0.41
	(-2.95)	(-3.08)	(-3.22)	(-3.05)	(-2.80)	(-3.48)	(-2.55)	(-3.48)	(-3.31)	(-3.80)	(-3.31)
R_{t+6}	-0.59	-0.53	-0.53	-0.52	-0.61	-0.58	-0.63	-0.57	-0.46	-0.52	-0.37
	(-2.86)	(-2.95)	(-3.10)	(-2.98)	(-2.72)	(-3.38)	(-2.97)	(-3.21)	(-3.16)	(-3.57)	(-3.08)

Panel A: All Stocks Sample

			Pa	nel B:	Liquid	l Samp	ole				
Dependent Variable	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
R_{t+2}	-0.76	-0.58	-0.61	-0.58	-0.65	-0.63	-0.62	-0.56	-0.52	-0.54	-0.42
	(-2.85)	(-3.33)	(-3.37)	(-3.32)	(-3.30)	(-3.54)	(-2.64)	(-3.31)	(-3.32)	(-3.42)	(-3.13)
R_{t+3}	-0.73	-0.55	-0.58	-0.54	-0.72	-0.58	-0.71	-0.53	-0.46	-0.51	-0.39
	(-2.76)	(-3.32)	(-3.41)	(-3.29)	(-3.65)	(-3.43)	(-3.51)	(-3.19)	(-3.06)	(-3.07)	(-2.69)
R_{t+4}	-0.73	-0.54	-0.55	-0.53	-0.64	-0.55	-0.59	-0.50	-0.48	-0.46	-0.34
	(-2.72)	(-3.08)	(-3.11)	(-3.07)	(-3.40)	(-3.07)	(-3.09)	(-2.88)	(-3.02)	(-2.76)	(-2.26)
R_{t+5}	-0.66	-0.47	-0.47	-0.47	-0.49	-0.47	-0.50	-0.43	-0.40	-0.39	-0.31
	(-2.46)	(-2.63)	(-2.73)	(-2.69)	(-2.28)	(-2.65)	(-2.62)	(-2.41)	(-2.56)	(-2.45)	(-2.20)
R_{t+6}	-0.68	-0.48	-0.49	-0.48	-0.54	-0.46	-0.64	-0.40	-0.44	-0.40	-0.29
	(-2.51)	(-2.48)	(-2.62)	(-2.68)	(-2.21)	(-2.38)	(-2.78)	(-2.03)	(-2.43)	(-2.36)	(-1.92)

Panel C: Large Cap Sample

			1 0110			ap ~ai	p0				
Dependent Variable	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
R_{t+2}	-0.89	-0.72	-0.72	-0.70	-0.82	-0.74	-0.79	-0.68	-0.63	-0.61	-0.51
	(-3.02)	(-3.43)	(-3.38)	(-3.41)	(-3.87)	(-3.36)	(-2.69)	(-3.20)	(-3.15)	(-2.91)	(-2.71)
R_{t+3}	-0.74	-0.60	-0.65	-0.58	-0.79	-0.62	-0.72	-0.60	-0.53	-0.58	-0.48
	(-2.70)	(-3.39)	(-3.62)	(-3.31)	(-4.27)	(-3.43)	(-2.94)	(-3.39)	(-3.15)	(-3.29)	(-3.16)
R_{t+4}	-0.64	-0.48	-0.50	-0.45	-0.59	-0.46	-0.60	-0.47	-0.43	-0.43	-0.28
	(-2.47)	(-2.80)	(-3.01)	(-2.69)	(-3.34)	(-2.57)	(-2.55)	(-2.79)	(-2.67)	(-2.62)	(-1.89)
R_{t+5}	-0.66	-0.51	-0.53	-0.51	-0.56	-0.49	-0.61	-0.46	-0.47	-0.47	-0.36
	(-2.33)	(-2.82)	(-2.92)	(-3.01)	(-2.97)	(-2.68)	(-2.80)	(-2.53)	(-2.74)	(-2.73)	(-2.44)
R_{t+6}	-0.73	-0.56	-0.55	-0.53	-0.64	-0.50	-0.63	-0.50	-0.51	-0.46	-0.40
	(-2.35)	(-2.59)	(-2.51)	(-2.80)	(-5584)	(-2.33)	(-2.57)	(-2.27)	(-2.45)	(-2.45)	(-2.43)