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Abstract

We test the hypothesis that bear market risk – time-variation in investors’ assessment of
future bear market states – is negatively priced. To capture bear market risk, we construct an
Arrow-Debreu state-contingent security – “AD Bear” – that has a terminal payoff of $1 in bad
market states and zero otherwise. We demonstrate theoretically and empirically that the short-
term AD Bear return is a forward-looking measure of bear market risk. We find that stocks
with high bear beta – high sensitivity to the AD Bear return – i.e. stocks that outperform
when bear market risk increases, earn average returns 1% per month lower than low-bear beta
stocks. Consistent with a risk-based explanation, the negative cross-sectional relation between
bear beta and future returns remains strong among liquid and large stocks, persists for at least
six months, and is robust to controlling for a long list of risk measures and anomaly variables.
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1 Introduction

Investors are known to be particularly averse to bear market states – states in which the market

portfolio suffers a large loss.1 As investors update their assessment of the prospect of future bear

market states, security prices change accordingly. We refer to this time-variation in investors’ ex

ante assessment of future bear market states as “bear market risk”.2 The contribution of this paper

is to empirically investigate the pricing implications of bear market risk. Our main hypothesis is

that bear market risk carries a negative price of risk. Intuitively, an increase in the probability of

a large market loss reduces investors’ utility and increases marginal utility. Therefore, securities

with high bear betas, i.e. stocks that outperform when the probability of future bear market states

increases, should earn low average returns because they pay off when marginal utility is high.

Our key innovation is to develop a measure of bear market risk. Motivated by Breeden and

Litzenberger (1978)’s observation that state prices can be discerned from option prices, we measure

bear market risk using the returns of an Arrow (1964) and Debreu (1959) (AD) portfolio – AD

Bear – constructed from S&P 500 index put options. The AD Bear portfolio pays off $1 when the

market at expiration is in a bear state.3 The price of the AD Bear portfolio is a forward-looking

measure of the (risk-neutral) probability of future bear market states. The short-term AD Bear

return therefore reflects the change in the ex ante probability of future bear market states, i.e., bear

market risk.4 Using the theoretical model in Wachter (2013), we demonstrate that bear market

risk is priced differently than CAPM market risk and that the component of the AD Bear portfolio

return that is orthogonal to the market return, i.e., the return of the AD Bear portfolio hedged with

respect to market risk, can be used to proxy for bear market risk. Consistent with our hypothesis,

the AD Bear portfolio generates negative alpha relative to the CAPM and other standard factor

models.

1See Ang et al. (2006) and citations therein.
2Theoretical work (Gabaix (2012), Wachter (2013)) finds that incorporating time-variation in disaster risk, the

consumption analog to bear market risk, into asset pricing models helps explain time-series variation in market
returns.

3In our main specification, we define bear states to be states in which the market excess return is 1.5 standard
deviations below zero or lower and use VIX as the measure of standard deviation.

4The use of the short-term AD Bear portfolio return, instead of hold-to-expiration return, is an important aspect of
our analysis. The short-term return captures bear market risk, whereas the the hold-to-expiration return is completely
determined by whether or not the market is in a bear state on the option expiration date.

1



In the focal tests of our main hypothesis, we form decile portfolios by sorting on bear beta,

calculated from historical regressions of stock excess returns on AD Bear excess returns. We find

that the post-formation value-weighted portfolio returns exhibit a strong decreasing pattern across

bear beta deciles that cannot be explained by exposures to standard risk factors. A zero-investment

portfolio that goes long the top bear beta decile portfolio and short bottom decile portfolio generates

an average return of about −1% per month, three-factor alpha of about −1.25% per month, and

five-factor alpha of about −0.70% per month.

For our results to be supportive of a rational risk pricing hypothesis, it is necessary that our port-

folios, which are sorted on historically-estimated pre-formation bear betas, have strong variation in

post-formation exposure to bear market risk. We therefore examine the post-formation sensitivity

of the bear beta-sorted portfolios to bear market risk. We find that post-formation sensitivities

show a pattern similar to that of the pre-formation sensitivities. The spread in post-formation bear

market risk exposure between the high- and low-bear beta portfolios is both economically and sta-

tistically significant. To further distinguish the risk-factor explanation from a potential mispricing

story, we repeat our portfolio tests using samples containing only liquid stocks and large cap stocks

(approximately the 2000 most liquid stocks and the largest 1000 stocks, respectively), for which

arbitrage costs are minimal, and find similar, if not stronger, results.

We are careful to differentiate the negative cross-sectional relation between bear beta and future

returns from previously documented relations between risk and expected returns. We use bivariate

portfolio analysis to control for several known risk-based pricing effects. Most importantly, we

control for the downside beta in Ang, Chen, and Xing (2006). We also control for measures of

aggregate volatility and jump risk such as VIX beta (Ang et al. (2006)) and the jump and volatility

betas used in Cremers, Halling, and Weinbaum (2015). To ensure that our results are not driven

by exposure to aggregate skewness risk, we control for coskewness (Harvey and Siddique (2000))

and aggregate skewness beta (Chang, Christoffersen, and Jacobs (2013)). Finally, we control for

tail beta (Kelly and Jiang (2014)) and idiosyncratic volatility (Ang et al. (2006)). Our results

demonstrate that none of these risk measures explains the negative relation between bear beta

and expected stock returns. We then use Fama and MacBeth (1973, FM hereafter) regression
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analyses to simultaneously control for these risk measures, as well as other known predictors of

expected returns such as market capitalization and the book-to-market ratio in Fama and French

(1992), momentum in Jegadeesh and Titman (1993), illiquidity in Amihud (2002), profitability and

investment in Fama and French (2015). The negative cross-sectional relation between bear beta

and expected stock returns is highly robust to controlling for these previously documented effects

in all three samples and the predictive power of bear beta persists for at least six months into the

future.

Our work builds on previous research on downside risk. Ang, Chen, and Xing (2006)’s seminal

paper shows that downside beta – the sensitivity of the stock’s return to the market return when

the market return is below its average – is positively related to the cross-section of expected stock

returns.5 We combine the insights in Ang, Chen, and Xing (2006) and Breeden and Litzenberger

(1978) and introduce a forward-looking measure of downside risk. Ang et al. (2006)’s downside

beta, originally proposed by Bawa and Lindenberg (1977), is designed to capture the covariance

between the stock return and the market return when a bear state occurs. In contrast, bear beta

is the covariance between the stock return and the innovation in the probability of future bear

states. To illustrate the difference, consider bear market states caused by the outbreak of war.

Downside beta measures how a stock’s price reacts when a war actually occurs. In contrast, bear

beta measures the effect of changes in the probability of war, as international tensions increase or

decrease, on the stock’s price, even if a war does not actually materialize.

Empirically, since bear beta is a forward-looking measure that captures stock return covariance

with changes in the probability of future bear states, it does not rely on bear state realizations.

This offers two advantages. First, even though bear market states occur infrequently, because the

probability of future bear market states varies continuously, we are able to use the full set of data

to calculate bear beta. Second, bear beta is not subject to the potential peso problem arising from

the fact that, in periods of prosperity, even the lowest returns may not represent bear states.

5Subsequent research follows this general theme. Bali, Cakici, and Whitelaw (2014) find that the left tail return
covariance between individual stocks predicts future stock returns. Lettau, Maggiori, and Weber (2014) show that
market betas differ depending on the market state and that betas in bad market states are a key determinant of
expected returns for many asset classes. Chabi-Yo, Ruenzi, and Weigert (2015) find that stocks that underperform
during crashes generate higher average returns.
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Our paper also adds to the research that uses the forward-looking information in option prices

to investigate relations between aggregate risk and the cross section of expected stock returns.6

Ang et al. (2006) and Cremers, Halling, and Weinbaum (2015) find that aggregate volatility risk

is priced in the cross section of stock returns. Cremers, Halling, and Weinbaum (2015) also find

that jump risk is priced. Since AD Bear has positive vega and gamma exposure, it is not surprising

that bear beta has a positive cross-sectional relation with the volatility beta and jump beta used

in Cremers, Halling, and Weinbaum (2015), as well as the VIX beta in Ang et al. (2006). We find

that including jump beta, volatility beta, and VIX beta as controls does not explain the bear beta

effect, indicating that we are capturing distinct pricing effects. Finally, Chang, Christoffersen, and

Jacobs (2013) investigate whether innovations in the risk-neutral skewness of the market return is

a risk factor and find a negative price of risk. Skewness is affected by both the left tail and right

tail of the market return distribution since it captures the asymmetry between the two tails, while

we focus solely on the left-tail. Bear beta has very low correlation with Chang, Christoffersen, and

Jacobs (2013)’s skewness beta, and inclusion of skewness beta as a control does not impact our

results.

The remainder of this paper proceeds as follows. In Section 2 we develop the theoretical

motivation for our main research question and for the implementation of our empirical analyses.

Section 3 discusses how we create the AD Bear portfolio and examines it returns. In Section 4 we

show that stock-level sensitivity to the AD Bear portfolio is priced in the cross section of stocks.

Section 5 demonstrates that our results are robust after controlling for previously documented

pricing effects. Section 6 concludes.

6Bollerslev and Todorov (2011) use options to empirically demonstrate that time-varying tail risk is an important
driver of the equity risk premium. There is a separate line of research that uses returns of option portfolios to
evaluate the non-linear risk exposure of hedge funds (Lo (2001), Mitchell and Pulvino (2001), Agarwal and Naik
(2004), Jurek and Stafford (2015), Agarwal, Arisoy, and Naik (2016)). Another distinct line of work examines the
ability of information embedded in single stock options (instead of sensitivities to the returns of index options) to
predict future returns (Bali and Hovakimian (2009), Cremers and Weinbaum (2010), Xing, Zhang, and Zhao (2010),
Bali and Murray (2013), An et al. (2014)).
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2 Theoretical Motivation for AD Bear

We begin by motivating AD Bear returns as a measure of bear market risk using Wachter (2013)’s

time-varying rare disaster model.7 The benefit of doing so is a clear exposition of the relation

between the pricing kernel, market risk, bear market risk, and AD Bear returns.

In Wachter (2013)’s model, the endowment (aggregate consumption, Ct) follows a jump-diffusion

process

dCt = µCt−dt+ σCt−dBt + (eZt − 1)Ct−dNt, (1)

where Bt is a standard Brownian motion and Zt is a negative random variable with a time-invariant

distribution that captures jump realizations. Nt is a Poisson process with time-varying intensity

λt defined by

dλt = κ(λ̄− λt) + σλ
√
λtdBλ,t, (2)

where Bλ,t is a standard Brownian motion independent of both Bt and Zt. Three independent

sources of risk affect the endowment process: 1) Bt – a standard Brownian motion capturing

continuous consumption shocks, 2) Zt – the realized consumption jump at time t, and 3) λt – the

time-varying intensity of future jumps. Bear market risk in this model is the innovation in the

intensity of future jumps, or dBλ,t, since λt is the sole state variable that determines time-variation

in investors’ assessment of future bear market states.

Letting πt be the stochastic discount factor (SDF), Ft be the price of the market portfolio, and

Xt be the price of the AD Bear portfolio, Table 1 examines the exposures of the SDF, Ft, and Xt

to the three sources of risk.8 The subsequent discussions focus on the first-order effects of the three

shocks. In our empirical analyses we are careful to control for potential exposure to higher-order

effects by controlling for jump risk and aggregate skewness risk.

The sensitivity of the SDF to dBt (continuous consumption innovations) is the negative of the

7We choose to develop the economic interpretation of the AD Bear returns using Wachter (2013)’s time-varying
disaster model because the AD Bear price is the discounted risk-neutral probability that the market is in a bear
state at expiration and Wachter (2013) explicitly models the impact of time-variation in the probability of negative
jumps. However, AD Bear returns can be similarly interpreted from the perspectives of other models that feature
time-varying bear market risk.

8All derivations are shown in Appendix A.
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coefficient of risk aversion (−γ ). Intuitively, a positive consumption innovation decreases marginal

utility. The sensitivity of the SDF to negative jumps in consumption is −γZt. Finally, the SDF’s

sensitivity to bear market risk, captured by the innovations in the intensity of jumps, dBλ,t, is bπ,λ

which is greater than zero since an increase in the intensity of jumps increases marginal utility.

We now examine the market portfolio return. An important observation from Table 1 is that

while both the market return and the SDF are sensitive to all three sources of risk, the SDF is not

a linear function of the market return. Specifically, the sensitivities of the market return to the

continuous consumption innovations (dBt) and realized jumps (Zt) are proportional to the corre-

sponding SDF sensitivities, while the market return’s sensitivity to innovations in jump intensity

(dBλ,t) is not. This means that in the economy described by Wachter (2013), the CAPM does not

hold. The failure of the CAPM is driven by the sensitivity of the market portfolio’s return to bear

market risk, or innovations in jump risk intensity. To correctly price assets, therefore, one must

account for the effect of bear market risk.

Most importantly, Table 1 shows that the sensitivities of the AD Bear portfolio’s return to

continuous consumption innovations (dBt) and realized jumps (Zt) are a simple multiple, −∆, of

the market portfolio return’s sensitivities to these risk factors. Therefore, a portfolio that is long

one dollar of the AD Bear portfolio and long ∆ dollars of the market portfolio has zero exposure to

continuous consumption innovations (dBt) and realized jumps (Zt). The returns of this portfolio

are exposed only to bear market risk (dBλ,t).

The economic insights from the above discussions are two-fold. First, in the presence of bear

market risk (captured in this model by time-variation in jump intensity), the market risk factor

is insufficient to price assets, i.e., the CAPM does not hold. Second, the AD Bear portfolio is

proportionally more sensitive than the market portfolio to bear market risk. Therefore, the returns

of the AD Bear portfolio hedged with respect to market risk can be used to capture bear market

risk and examine its asset pricing implications.
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3 AD Bear Portfolio

3.1 Data

We gather data for S&P 500 index options expiring on the third Friday of each month, S&P 500

index levels, S&P 500 index dividend yields, VIX index levels, and risk-free rates for the period

from January 4, 1996 through August 31, 2015 from OptionMetrics (OM hereafter).9 To ensure

data quality, we remove options with bid prices of zero and options that violate simple arbitrage

conditions, as indicated by a missing implied volatility in OM. We define the price of an option

to be the average of the bid and offer prices and the dollar trading volume to be the number of

contracts traded times the option price. The T -year S&P 500 index forward price is taken to be

F = S0e
(r−y)T where S0 is the closing level of the S&P 500 index, r is the continuously compounded

risk-free rate for maturity T , and y is the dividend yield of the S&P 500 index.

3.2 Construction of AD Bear

Theoretically, the AD Bear portfolio will generate a payoff of $1 when the S&P 500 index level

at expiration is in a bear state, defined as index levels below some value K2, and zero otherwise.

Becauses of the discreteness of option strikes, this payoff structure cannot be perfectly replicated

using traded options. We therefore approximate the AD Bear portfolio with a portfolio that is long

a put option with strike price K1 > K2 and short a put option strike price K2, as shown in Figure

1. The terminal payoff is K1−K2 when the index level is below K2 at option expiration, zero when

the index level is above K1, and linearly decreasing from K1 −K2 to zero when the index level is

between K2 and K1. To make the terminal payoff equal to one when the index level is below K2,

we normalize the long and short put positions by 1
K1−K2

.

When implementing the AD Bear portfolio, we make several empirical choices that are largely

driven by features of the option data. First, for any day d, we create the AD Bear portfolio using

one-month options, which are defined as options that expire in the calendar month subsequent to

9On 1/31/1997 and 11/26/1997, no VIX index level is available. We set the VIX index level on 1/31/1997 to
19.47, its closing value on 1/30/1997. Similarly, we set the VIX index level on 11/26/1997 to 28.95, its closing value
on 11/25/1997.
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the calendar month in which day d falls. This choice is driven by the fact that one-month options

tend to be more liquid than options with longer time to expiration.10 Second, we choose K2 to be

1.5 standard deviations below the S&P 500 index forward price. This is equivalent to defining bear

market states to be states in which the market excess return is more than 1.5 standard deviations

below zero. We choose 1.5 standard deviations based on a trade off between our objective of

capturing the pricing effect of severe bear states with the practical consideration that very-far

out-of-the-money (OTM) put options are illiquid, making their pricing unreliable and frequently

unavailable in the data.11 Third, following Jurek and Stafford (2015), we take the level of the VIX

index divided by 100 as our measure of standard deviation.12 Fourth, we choose K1 to be one

standard deviation below the forward price. Theoretically, we would like to choose K1 close to K2

because, as can be seen in Figure 1, the payoff function of the option portfolio converges to the

theoretical AD Bear payoff function as K1 −K2 approaches zero. However, as K1 approaches K2,

the difference in the prices of the options approaches zero as well. Since the price of the AD Bear

portfolio is simply the difference in the option prices scaled by the difference in strikes, if we choose

K1 very close to K2, the informational content of the price difference is frequently overwhelmed by

bid-ask spread-induced noise.

We therefore construct the AD Bear option portfolio as follows. Letting T be the time until

option expiration, σ be the level of the VIX index divided by 100, and F be the forward price,

we define K(z) = Fezσ
√
T to be the strike price z standard deviations from the forward price and

P (z) to be price of the put option with strike K(z). The price of the AD Bear portfolio, PAD Bear,

is

PAD Bear =
P (−1)− P (−1.5)

K(−1)−K(−1.5)
. (3)

10The use of one-month options is consistent with previous research (Chang, Christoffersen, and Jacobs (2013),
Cremers, Halling, and Weinbaum (2015), Jurek and Stafford (2015)). In unreported tests, we find that our results
are robust when using two-month options.

11Our bear region corresponds to approximately the worst 6.7% of market states under the assumption of log-
normally distributed returns. In unreported tests, we find that our results are slightly weaker when using one
standard deviation below zero as the bear state boundary. The relative weakness is consistent with the market being
more concerned about larger losses.

12In unreported tests, we find that our results are robust when using a constant standard deviation of 20%.
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Since options are available for only a discrete set of strikes, we approximate the price of the put

option with strike price K(z) as

P (z) =
∑

z′∈[z−0.25, z+0.25]

P (z′)w(z′). (4)

The summation is taken over all traded options with strikes within 0.25 standard deviations of the

target strike K(z). The weight w(z′) is the ratio of the dollar trading volume of the option with

strike price K(z′) to the total dollar volume of the options over which the summation is calculated:

w
(
z′
)

=
$V ol (z′)∑

z′∈[z−0.25, z+0.25] $V ol (z′)
(5)

where $V ol(z′) is the dollar trading volume of the option with strike K(z′). Taking the volume-

weighted average put price over a range of strikes increases the informativeness of the AD Bear

portfolio price by putting more weight on liquid options whose prices are likely to be more reflective

of true option value and less subject to noise induced by the bid-ask spread.

3.3 AD Bear Portfolio Returns

Each trading day from January 4, 1996 through August 24, 2015, we create the AD Bear

portfolio. We calculate the AD Bear return over the next five-trading days (one calendar week

except when there is a holiday). The choice to use a five-day return is based on a trade-off between

theory and practical considerations. Our theoretical motivation is based on instantaneous returns,

which leads us to use a return period as short as possible. However, bear betas computed using

short-term returns may suffer from biases introduced by nonsynchronous trading in the stock and

option markets (Scholes and Williams (1977), Dimson (1979)). Using five-day returns is a reasonable

balance between these two considerations.

The five-day excess return of the AD Bear portfolio formed five trading days prior to day d,

which we denote RAD Bear,d, is given by

RAD Bear,d =
PAD Bear,d

PAD Bear,d−5
−Rf,d (6)
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where PAD Bear,d and PAD Bear,d−5 are the day d and d − 5 prices, respectively, of the AD Bear

portfolio formed at the close of day d − 5, and Rf,d is the five trading day compounded gross

return on the risk-free security from the close of day d − 5 to the close of day d.13 The result is

a time-series of overlapping five-day AD Bear portfolio excess returns for the period from January

11, 1996 through August 31, 2015.14

Table 2 presents summary statistics for the daily five-day overlapping excess returns of the AD

Bear portfolio. The first row presents results for the unscaled AD Bear returns. AD Bear generates

an average excess return of −8.12% per five-day period, with a standard deviation of 74.72%. The

large magnitude of the AD Bear excess returns reflects the leverage embedded in options. To

facilitate comparison with other factors, for the remainder of this paper, we scale the AD Bear

excess returns by 28.87836 so that the standard deviation of the scaled AD Bear excess returns is

equal to that of the market excess returns. The row labeled “AD Bear” presents summary statistics

for the scaled AD Bear portfolio excess returns. The AD Bear portfolio generates a scaled average

excess return of −0.28% per five-day period with a standard deviation of 2.59.15 The distribution

of AD Bear excess returns exhibits large positive skewness of 2.81.

The remainder of Table 2 presents, for comparison, summary statistics for the daily five-day

excess returns of the market (MKT) factor, the size (SMB) and value (HML) factors of Fama and

French (1993), the momentum (MOM) factor of Carhart (1997), the size (ME), profitability (ROE),

and investment (IA) factors from the Q-factor model of Hou et al. (2015), and the size (SMB5),

profitability (RMW), and investment (CMA) factors from the five-factor model of Fama and French

(2015).16 The mean five-day excess returns of the factors range from 0.04% for the SMB factor to

13Daily risk-free security return data are gathered from Kenneth French’s data library.
14If insufficient data are available to calculate the AD Bear return (see Jurek and Stafford (2015)), we consider

the return for the given five-day period to be missing. Since AD Bear has a non-negative payoff structure, we also
require that entering into a long (short) position in the AD Bear portfolio by trading at the quoted bid and offer
would result in a positive cash outflow (inflow). Imposing these screens results in valid returns for 4910 out of 4944
days during the sample period.

15There is a literature examining the large negative returns of OTM S&P 500 index put options (Coval and
Shumway (2001), Jackwerth (2000), Broadie, Chernov, and Johannes (2009), and Bondarenko (2014)). Since the AD
Bear portfolio has both long and short positions in OTM S&P 500 index put options, it is unclear ex-ante from these
previous results whether the average excess return of AD Bear should be positive or negative.

16MKT, SMB, HML, MOM, SMB5, RMW, and CMA factor return data are gathered from Kenneth French’s data
library. We thank Lu Zhang for providing the ME, ROE, and IA factor returns. The five-day excess factor returns
are calculated as the daily factor gross return, compounded over the given five day period, minus the five-day gross
compounded return of the risk-free security.
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0.15% for the MKT factor.

3.4 Factor Analysis of AD Bear Returns

We begin the empirical investigation of our main hypothesis by examining whether the average

returns of the AD Bear portfolio can be explained by exposures to standard risk factors. We

measure the risk exposures by regressing five-day AD Bear excess returns, RAD Bear,t, on risk factor

returns, Ft. The regression specification is

RAD Bear,t = α+ β
′
Ft + εt. (7)

The standard risk factors we use are returns of zero-investment portfolios. The average returns

of these portfolios capture the factor risk premia. Therefore, α in regression (7) measures the

average return of the AD Bear portfolio that is not compensation for exposure to the risk factors

considered. AD Bear has positive exposure to bear market risk and bear market risk is predicted

to carry a negative premium. If bear market risk is distinct from previously identified factors, then

AD Bear should generate negative alpha relative to standard factor models.

Before proceeding to the factor model analyses, we first examine whether the average AD Bear

excess return is statistically distinguishable from zero. Table 3 shows that the average AD Bear

excess return of −0.28% per five-day period is highly significant with a Newey and West (1987,

NW hereafter)-adjusted t-statistic of −3.60. Our first factor analysis in Table 3 examines whether

the premium earned by the AD Bear portfolio can be explained by exposure to CAPM market

risk. Consistent with the prediction from the model derived in Section 2, despite AD Bear’s strong

negative exposure to the market factor (βCAPM = −0.81), the average AD Bear excess return

cannot be fully explained by market factor exposure. AD Bear’s alpha relative to the CAPM

model is −0.15% per five days, highly significant with a t-statistic of −3.83. This is our first

indication of a negative price of bear market risk.

While the CAPM regression demonstrates that the negative premium generated by AD Bear

is not completely explained by market risk, it is possible that some combination of previously

established factors captures bear market risk. We therefore test whether AD Bear’s CAPM alpha
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can be explained by risk factor models proposed by Fama and French (1993), Carhart (1997), Hou

et al. (2015), and Fama and French (2015). Table 3 shows that these factor models cannot explain

the AD Bear excess returns. AD Bear produces alpha of −0.16% per five day period (t-statistic =

−3.85) relative to the Fama and French (1993) model (FF3) that includes MKT, SMB, and HML

and alpha of −0.14% per five day period (t-statistic of −3.23) relative to the four-factor model of

Fama and French (1993) and Carhart (1997) (FFC) that includes MKT, SMB, HML, and MOM.

AD Bear’s alpha relative to the Q-factor model of Hou et al. (2015) (Q) that includes MKT, ME,

ROE, and IA is −0.13% per five day period (t-statistic of −3.09). Finally, AD Bear generates

alpha of −0.13% (t-statistic = −2.97) per five-day period relative to the Fama and French (2015)

five-factor model (FF5), which includes MKT, SMB5, HML, RMW, and CMA. Augmenting the

CAPM with additional factors produces negligible changes in R2. Approximately 35% of the total

variation in AD Bear excess returns cannot be explained by these risk factors.

3.5 Hedged AD Bear Returns

In Section 2 we demonstrated theoretically that the excess return of the AD Bear portfolio

hedged with respect to the market factor (hedged AD Bear portfolio) is highly responsive to bear

market risk. The intercept plus the residual from the CAPM regression in Table 3 can be interpreted

as the return of this hedged portfolio. Large residuals should thus coincide with economic events

affecting investors’ forward-looking assessment of future bear market states occur.17 In Figure

2, we plot the time-series of residuals from the CAPM regression and indicate the five largest

residuals with the numbers 1-5. The largest residual of 34.62% occurs during the five-trading day

period between the end of February 26, 2007 and the end of March 5 2007. During this period,

the Chinese stock market crashed – the SSE Composite Index of the Shanghai Stock Exchange

experienced a 9% drop on Feb 27, 2007, the largest in 10 years.18 The second largest residual of

16.8% comes on 5/6/2010 (formation date 4/29/2010). This period coincides with the 2010 Flash

Crash and the opening of the criminal investigation of Goldman Sachs related to security fraud in

17Since we use the CAPM as the benchmark model, economic events that induce large negative market returns
would not be captured by our hedged AD Bear return, which is orthogonalized to the market factor.

18Quote from Wall Street Journal, Page C4, Today’s Market: “Investor fear that pressured stocks also spilled into
bond markets... the Dow Jones Industrial Average finished 416.02 points, or 3.3%, lower as part of a global sell-off
that began with a pullback in China’s red-hot stock market.”
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mortgage trading.19 The third largest residual occurs between 5/31/2011 and 6/7/2011, a period

characterized by a series of bad economics news. Moody’s cut Greece’s credit rating by three

notches to an extremely speculative level. Both the ISM manufacturing report and the private

sector employment report came in well below economists’ expectations. The fourth largest residual

(8/18/2015 through 8/25/2015) corresponds to the Chinese stock market’s “Black Monday” when

the Shanghai Composite Index tumbled 8.5%, the biggest loss since February 2007. Finally, the

fifth largest residual occurs between 12/29/2014 and 1/6/2015, when the price of oil fell below $50

a barrel for the first time in nearly six years and Greece’s Snap Election renewed political turmoil.

Notably, market returns during these five periods are only moderately negative. Therefore, the

largest hedged AD Bear returns appear to be associated with important negative economic events,

but these events are different from events that drive the largest negative market returns.

In summary, Table 3 demonstrates that AD Bear returns have a component that is orthogonal to

the market risk factor (and other commonly used risk factors) and that this orthogonal component

earns a negative and highly statistically significant average premium. Figure 2 shows that large

spikes in the hedged AD Bear return correspond to news events that plausibly result in an increase

in the market’s assessment of the prospects of a future bear market state. We caution against relying

on these results to conclude that bear market risk is a priced risk factor. The AD Bear portfolio

is constructed from out-of-the-money put options that have wide bid-ask spreads. Trading the AD

Bear portfolio by buying at the ask price and selling at the bid price would incur transaction costs

that are an order of magnitude larger than the average AD Bear return. We therefore interpret the

AD Bear returns simply as indicative of bear market risk and proceed to test our main hypothesis,

that bear market risk has a negative price of risk, by examining the cross-sectional relation between

bear market risk exposure and expected stock returns.

4 Bear Beta and Expected Stock Returns

If the negative alpha of the AD Bear portfolio is due to exposure to bear market risk, stock-level

19Quotes from Wall Street Journal, Page C4, Today’s Market: “A bad day in the financial markets was made worse
by an apparent trading glitch, leaving traders and investors nervous and scratching their heads over how a mistake
could send the Dow Jones Industrial Average into a 1,000 point tailspin.” “Stocks tumbled Friday, capping the worst
week since January, as news that Goldman Sachs Group is now the subject of a criminal probe prompted investors
to sell financial shares.”
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sensitivity to the hedged AD Bear returns should exhibit a negative cross-sectional relation with

expected stock returns. In this section, we test this hypothesis.

4.1 Bear Beta

For each stock i at the end of each month t, we run a time-series regression of excess stock returns

on the excess market return (MKT) and the scaled excess return of the AD Bear portfolio. The

regression specification is

Ri,d = β0 + βMKT
i MKTd + βBEAR

i RAD Bear,d + εi,d (8)

where Ri,d is the excess return of stock i over the the five-trading-day period ending at the close of

day d, MKTd is the contemporaneous market excess return, and RAD Bear,d is the contemporaneous

AD Bear excess return.20 The regression uses overlapping returns for five-day periods ending in

months t − 11 through t, inclusive. We require at least 183 valid observations to estimate the

regression, meaning the regression has at least 180 degrees of freedom. To minimize the estimation

errors associated with the rolling-window regressions, we follow Fama and French (1997) and adjust

the OLS coefficient using a Bayes shrinkage method. We use the shrinkage-adjusted value, which

we denote βBEAR, in our empirical analyses. The details are provided in Appendix B.

4.2 Samples

We use three different samples, which we term the All Stocks, Liquid, and Large Cap samples,

in our examination of the relation between bear beta and expected stock returns. Each month t,

the All Stocks sample consists of all U.S.-based common stocks in the CRSP database that have

a valid month t value of βBEAR. The Liquid sample is the subset of the All Stocks sample with

Amihud (2002) illiquidity (ILLIQ) values that are less than or equal to the 80th percentile month t

ILLIQ value among NYSE stocks.21 Finally, the Large Cap sample is the subset of the All Stocks

20The AD Bear portfolio is formed at the close of trading day d− 5 and held until the close of day d. All returns
are calculated over this same period. When calculating five-day excess stock returns (Ri,d), we require that a return
from each of the five days be available.

21ILLIQ is calcuated following Amihud (2002) as the absolute daily return measured in percent divided by the
daily dollar trading volume in $millions, averaged over all days in months t− 11 through t, inclusive.
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sample with market capitalization (MKTCAP) values that are greater than or equal to the 50th

percentile value of MKTCAP among NYSE stocks.22 We use the Liquid and Large Cap samples

to distinguish between risk pricing and mispricing explanations for our results. Our samples cover

the months t (one-month-ahead return months t+ 1) from December 1996 (January 1997) through

August 2015 (September 2015). This period is chosen because December 1996 and August 2015

are the first and last months for which βBEAR can be estimated on a full year’s worth of data due

to the availability of the OM data.

Table 4 presents the time-series averages of monthly cross-sectional summary statistics for

βBEAR, MKTCAP, and ILLIQ. In the average month, All Stock sample values of βBEAR range

from −1.67 to 2.05, with mean (0.06) and median (0.05) values that are very close to zero and a

standard deviation of 0.40. The distribution of βBEAR has a small positive skewness of 0.23. The

mean (median) MKTCAP of stocks in the All Stocks sample is $3.2 billion ($308 million), and the

mean (median) value of ILLIQ is 198 (4.75). The All Stocks sample has, on average, 4787 stocks

per month. The distributions of βBEAR in the Liquid and Large Cap samples are similar to that

of the All Stocks sample. As expected, the Liquid sample has larger and more liquid stocks than

the All Stocks sample, and Large Cap sample stocks are larger and more liquid than Liquid sample

stocks. The Liquid (Large Cap) sample has 2041 (1005) stocks in the average month.

4.3 βBEAR-Sorted Portfolios

4.3.1 Post-formation Portfolio Returns

We begin our examination of the relation between bear beta and expected stock returns with a

univariate portfolio analysis using βBEAR as the sort variable. At the end of each month t, all stocks

in the given sample are sorted into decile portfolios based on an ascending ordering of βBEAR. We

then calculate the value-weighted average month t+1 excess return for each of the decile portfolios,

as well as for the zero-investment portfolio that is long the βBEAR decile 10 portfolio and short the

22 MKTCAP is the number of shares outstanding times the stock price, recorded at the end of month t in $millions.
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βBEAR decile one portfolio (βBEAR 10− 1 portfolio).23

Panel A of Table 5 shows that for the All Stocks sample, average excess returns are nearly

monotonically decreasing across βBEAR deciles. The βBEAR decile one portfolio generates an average

excess return of 0.99% per month and the average excess return of the 10th decile portfolio is−0.14%

per month. The βBEAR 10− 1 portfolio average return of −1.13% per month is economically large

and highly statistically significant with a NW t-statistic of −2.67. To examine whether the pattern

in the excess returns of the βBEAR-sorted portfolios is a manifestation of exposure to previously

identified risk factors, we calculate the abnormal returns of the decile portfolios relative to the

CAPM, FF3, FFC, Q and FF5 factor models. The results demonstrate that standard risk factors

do not explain the relation between βBEAR and average returns since the alphas exhibit a similar

monotonically decreasing pattern across βBEAR deciles and the alpha of the βBEAR 10− 1 portfolio

relative to each of the factor models is negative and statistically significant. The βBEAR 10 − 1

portfolio generates monthly alpha of −1.48% per month (t-statistic = −3.59), −1.33% (t-statistic

= −3.92), −1.25% (t-statistic = −3.38), −0.84% (t-statistic = −2.41), and −0.71% (t-statistic =

−2.29) relative to the CAPM, FF3, FFC, Q, and FF5 factor models, respectively.

4.3.2 Post-formation Factor Loadings

Theoretically, a factor model indicates contemporaneous relations between the true factor loading

and expected returns. Our empirical tests have used a pre-formation measure of bear beta (βBEAR)

calculated at the end of month t to predict returns in month t + 1 and implicitly assumed that

this pre-formation βBEAR is indicative of the month t + 1 stock-level sensitivity to bear market

risk. To interpret the results of our empirical analyses as supportive of a risk-based explanation, it

is necessary that our portfolios exhibit dispersion in post-formation exposure to bear market risk.

23The excess return in month t + 1 is defined as the delisting-adjusted (Shumway (1997)) stock return minus the
return of the one-month U.S. Treasury bill in month t+ 1, recorded in percent. If the stock is delisted in month t+ 1,
if a delisting return is provided by CRSP, we take the month t + 1 return of the stock to be the delisting return.
If no delisting return is available, then we determine the stock’s return based on the delisting code in CRSP. If the
delisting code is 500 (reason unavailable), 520 (went to OTC), 551-573 or 580 (various reasons), 574 (bankruptcy), or
584 (does not meet exchange financial guidelines), we take the stock’s return during the delisting month to be −30%.
If the delisting code has a value other than the previously mentioned values and there is no delisting return, we take
the stock’s return during the delisting month to be −100%.
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To test whether this is the case, we calculate the post-formation sensitivities of the decile portfolio

returns to the AD Bear returns by regressing the entire time-series of post-formation overlapping

five-day excess returns of the βBEAR decile portfolios on the contemporaneous AD Bear excess

return and MKT, as in equation (8).24

For sake of comparison, Table 5 presents value-weighted average value of (pre-formation) βBEAR

for each of the decile portfolios. By construction, the value-weighted pre-formation values of βBEAR

increase from −0.58 for the first βBEAR decile portfolio to 0.78 for βBEAR decile portfolio 10. In

support of a risk factor based interpretation of the cross-sectional pattern in returns, the results in

Table 5 indicate that the βBEAR 10−1 portfolio has a strong positive post-formation AD Bear sen-

sitivity of 0.21 (t-statistic = 2.83). While pre-formation βBEAR is an imperfect measure of the true

forward-looking factor loading, it is sufficiently accurate to generate economically and statistically

significant post-formation exposure to AD Bear returns. To our knowledge, this is the first paper

to identify a factor not based on stock returns that successfully generates significant spreads in

both the post-formation returns and post-formation factor loadings among stock portfolios sorted

on pre-formation factor sensitivities.

4.3.3 Subsample Analysis

If the negative cross-sectional relation between βBEAR and future stock returns is truly indicative

of a risk pricing effect, we expect that the effect remains strong in liquid and large stocks. On the

other hand, if the negative relation between βBEAR and future stock returns captures mispricing,

we would expect the relation to be weak or non-existent among liquid and large stocks where limits

to arbitrage (Shleifer and Vishny (1997)) are unlikely to bind. To distinguish between the risk

pricing and mispricing explanations, we repeat the portfolio tests using our Liquid and Large Cap

samples.

Results for the Liquid sample, shown in Panel B of Table 5, are very similar to those of the

All Stocks sample. The Liquid sample average portfolio excess returns decrease strongly across

βBEAR deciles. The βBEAR 10− 1 portfolio generates an economically large and highly statistically

24The portfolios are still rebalanced at the end of each month t .
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significant average return of −1.08% per month (t-statistic = −2.41), with alphas ranging from

−1.48% per month (t-statistic = −3.48) using the CAPM model to −0.70% per month (t-statistic

= −2.39) using the FF5 model. The Liquid sample βBEAR 10 − 1 portfolio has a post-formation

sensitivity of 0.22 (t-statistic = 2.81) to AD Bear excess returns, indicating that the portfolio sort

is effective at generating assets with strong variation in post-formation exposure to bear market

risk.

The Large Cap sample results in Table 5 Panel C are once again similar to those of the other

two samples. The portfolio excess returns and alphas exhibit a strong decreasing pattern across

βBEAR deciles. The βBEAR 10 − 1 portfolio generates economically large and highly statistically

significant negative alpha relative to all factor models, ranging from −1.33% per month (t-statistic

= −3.21) using the CAPM model to −0.55% per month (t-statistic = −2.17) using the FF5 model.

Once again, supportive of a risk-based explanation for the pattern in returns, the βBEAR 10 − 1

portfolio exhibits a strong positive post-formation sensitivity to the AD Bear excess returns.

5 Robustness

5.1 Bivariate Portfolio Analyses

Having demonstrated a strong negative cross-sectional relation between bear beta and expected

stock returns that is not explained by standard risk factors, we proceed to investigate the possibility

that this relation can be explained by risks not captured by the standard risk factors. Table 6 shows

average values of several risk variables across the univariate βBEAR decile portfolios.25 We use each

of these risk variables as controls and test the robustness of our univariate βBEAR portfolio results

by constructing bivariate portfolios that are neutral to a control variable while having variation in

βBEAR. Specifically, at the end of each month t, we sort all stocks into ascending control variable

deciles. Within each control variable decile, we sort stocks into decile portfolios based on an

ascending ordering of βBEAR. We then calculate the value-weighted month t+ 1 excess return for

each of the resulting portfolios. Next, we compute the average month t + 1 excess return across

the control variable decile portfolios within each βBEAR decile, and refer to this as the bivariate

25We describe each risk variable as we discuss the corresponding results. More detailed descriptions of the control
variables are provided in Section I of the online appendix.
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βBEAR decile portfolio excess return. Finally, we calculate the difference in month t + 1 returns

between the bivariate βBEAR decile 10 and decile one portfolios (βBEAR 10−1 portfolio). Since the

bivariate βBEAR decile portfolios have similar exposure to the control variable, any return pattern

across the bivariate βBEAR decile portfolios is unlikely to be driven by the control variable. The

results of the bivariate portfolio analyses are shown in Table 7.

We first control for CAPM beta (βCAPM), measured as the the slope coefficient from a one-

year rolling window regression of daily excess stock returns on MKT. Table 6 shows that, in all

three samples, average βCAPM increases across the univariate βBEAR decile portfolios. Frazzini

and Pedersen (2014) show that high (low) CAPM beta stocks generate negative (positive) alphas

under standard risk factor models. We thus test whether our results can be explained by the

“betting-against-beta” effect. Table 7 shows that, controlling for βCAPM, the CAPM alpha of the

bivariate βBEAR 10− 1 portfolio is less negative than that of the univariate βBEAR 10− 1 portfolio,

−0.79% per month vs. −1.48% per month in the All Stocks sample. Nevertheless, the CAPM alpha

of the bivariate βBEAR 10 − 1 portfolio is still large and highly statistically significant (t-statistic

= −3.20). Furthermore, we observe alphas ranging from −0.55% to −0.74% per month with t-

statistics between −2.32 and −3.13 for the bivariate βBEAR 10 − 1 portfolio when we benchmark

against FF3, FFC, Q, and FF5 models. Restricting the sample to liquid or large cap stocks yields

even stronger results. Therefore, controlling for CAPM beta does not explain the negative relation

between bear beta and expected returns.

We then investigate whether downside beta studied in Ang, Chen, and Xing (2006) can explain

the negative relation between bear beta and expected stock returns. Ang, Chen, and Xing (2006)

find a positive relation between average stock returns and downside beta (β−), measured as the

slope coefficient from a one-year rolling window regression of daily excess stock returns on MKT

using only below-average MKT days. As discussed in the introduction and in Section 2, while both

β− and βBEAR are measures of downside risks, they capture economically different sources of risk:

β− measures the covariance between the stock return and the market return when a bear state

occurs, whereas βBEAR measures the covariance between the stock return and the innovation in

the probability of future bear states. Since β− is strongly correlated with CAPM market beta, to
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control for market risk, Ang, Chen, and Xing (2006) compute relative downside beta, β−−βCAPM,

and show that this measure is also positively related to expected stock returns.26 Our βBEAR is

more comparable to β−−βCAPM than β− because, by including the market factor in the time-series

regression used to compute βBEAR, we effectively control for exposure to market risk. Consistent

with this intuition, Table 6 indicates that the cross-sectional relation between βBEAR and β− is

similar to that between βBEAR and βCAPM, likely due to the strong correlation between β− and

βCAPM. Once we control for market risk by subtracting CAPM beta from downside beta, we find a

negative cross-sectional relation between βBEAR and β− − βCAPM, suggesting that there is overlap

between stocks that lose value when bear market risk increases and stocks that comove more with

the market when the market is down. It is therefore plausible that low βBEAR stocks have higher

average returns because they have, on average, higher β− − βCAPM. However, Table 7 shows that

controlling for either β− or β− − βCAPM cannot explain the negative relation between βBEAR and

future stock returns. Specifically, controling for β− yields βBEAR 10 − 1 return spreads between

−0.77% and −0.43% per month across the three samples, all of which are statistically significant at

the 5% level. Controlling for β− − βCAPM yields even more negative βBEAR 10− 1 monthly return

spreads of −0.97% (t-statistic = −2.55), −0.93% (t-statistic = −2.43), and −0.81% (t-statistic =

−2.09) in the All Stocks, Liquid, and Large Cap samples, respectively. In all cases, the alphas

relative to each of the factor models remain negative, economically large, and highly statistically

significant.

Our next tests examine whether systematic volatility or jump risk can explain the negative

relation between bear beta and expected stock returns. Ang et al. (2006) find that expected stock

returns are negatively related to VIX beta (β∆VIX), measured as the slope coefficient on the change

in the VIX index from a one-month rolling window regression of daily excess stock returns on MKT

and VIX changes. Cremers, Halling, and Weinbaum (2015) argue that changes in VIX capture

a combination of changes in aggregate volatility risk (VOL) and changes in aggregate jump risk

(JUMP) and design option portfolios to capture each of these risks. They find that stock-level

sensitivities to both VOL (βVOL) and JUMP (βJUMP), each of which is measured as the sum of the

26In unreported results, we confirm Ang, Chen, and Xing (2006)’s finding that the correlation between β− and
βCAPM is above 0.7.
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coefficients on contemporaneous and lagged JUMP or VOL factor returns from a one-year rolling

window regression of excess stock returns, are both negatively related to expected stock returns.27

Since the AD Bear portfolio has positive vega (volatility) and gamma (jump) exposure, we expect

a positive cross-sectional relation between βBEAR and each of β∆VIX, βVOL, and βJUMP. Table

6 shows that this is indeed the case, making it plausible that β∆VIX, βVOL, or βJUMP explains

the negative relation between future stock returns and βBEAR. Nevertheless, Table 7 provides little

evidence that any of these risk measures fully captures the pricing effect of βBEAR, since the average

returns and alphas of the bivariate βBEAR 10 − 1 portfolios in all three samples are all greater in

magnitude than −0.52% per month and statistically significant at the 5% level.

We then examine two measures of systematic skewness risk. While skewness does not explicitly

differentiate between upside and downside risk, it is possible that skewness risk is mostly driven by

the left tail of the distribution of the market return. The first measure is coskewness (COSKEW),

measured as the slope coefficient on MKT2 from a 60-month rolling window regression of monthly

excess stock returns on MKT and MKT2, which is shown by Harvey and Siddique (2000) to be

negatively related to expected stock returns. Table 6 documents a positive cross-sectional relation

between COSKEW and βBEAR, suggesting that COSKEW may potentially capture the βBEAR

effect. However, the results of the bivariate portfolio analysis show that controlling for COSKEW

does not explain the negative average excess return or alphas of the βBEAR 10 − 1 portfolio. The

second measure is skewness beta (β∆SKEW) proposed in Chang et al. (2013), calculated as the slope

coefficient on innovations in aggregate risk-neutral skewness (∆SKEW) from a regression of daily

excess stock returns on daily values of MKT, aggregate volatility changes, ∆SKEW, and aggregate

kurtosis innovations, is negatively related to expected stock returns.28 However, Table 6 shows that

average values of β∆SKEW tend to be lower for the high βBEAR deciles, suggesting that controlling

27We thank Martijn Cremers, Michael Halling, and David Weinbaum for providing us with daily JUMP and VOL
factor returns. The JUMP and VOL factor data end on March 31, 2012. Thus, analyses using βJUMP or βVOL cover
months t (return months t+ 1) from December 1996 (January 1997) through March 2012 (April 2012).

28We thank Bo Young Chang, Peter Christoffersen, and Kris Jacobs for providing the ∆VOL, ∆SKEW, and
∆KURT factor data. The ∆VOL, ∆SKEW, and ∆KURT data end on December 31, 2007. Thus, analyses using
β∆SKEW cover months t (return months t+1) from December 1996 (January 1997) through December 2007 (January
2008). We use the skewness beta computed based on one-month multivariate regression because it exhibits the
strongest predictive power among the four skewness betas reported in Table 3 of Chang, Christoffersen, and Jacobs
(2013).
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for β∆SKEW is unlikely to explain negative cross-sectional relation between βBEAR and future stock

returns. Indeed, the bivariate portfolio results in Table 7 show that the average excess return and

alphas of the bivariate βBEAR 10−1 portfolio constructed to be neutral to β∆SKEW remain negative,

large in magnitude, and highly statistically significant.

Finally, we control for two risk measures that are computed directly from individual stock re-

turns. First, Kelly and Jiang (2014) measure tail risk by aggregating large daily losses on individual

stocks and calculate tail beta (βTAIL) by regressing stock returns on lagged tail risk. We find that

average values of βTAIL do not exhibit a strong pattern across the deciles of βBEAR (Table 6).29

The results of the bivariate portfolio analyses in Table 7 show that after controlling for βTAIL,

the βBEAR 10 − 1 portfolio still generates economically large, negative, and highly statistically

significant average excess returns and alphas. Second, Ang et al. (2006) find that idiosyncratic

volatilty (IVOL), calculated as the standard deviation of the residuals from a one-month rolling

window regression of daily excess stock returns on MKT, SMB, and HML, is negatively related to

the cross-section of future stock returns. Table 6 shows that average values of IVOL do not exhibit

a strong cross-sectional relation with βBEAR and, not surprisingly therefore, the bivariate portfolio

analysis results in Table 7 show that controlling for IVOL cannot explain the negative relation

between βBEAR and future stock returns.

5.2 Fama-MacBeth Regression Analyses

Bivariate portfolio analysis allows us to control for the effect of one variable at a time when

examining the relation between bear beta and expected stock returns. To control for multiple

potentially confounding effects simultaneously, we use Fama and MacBeth (1973, FM hereafter)

regression analyses. Each month t, we run the following cross-sectional regression:

Ri,t+1 = λ0,t + λ1,tβ
BEAR
i,t + ΛtXi,t + εi,t (9)

where Ri,t+1 is stock i’s month t+ 1 excess return, βBEAR
i,t is stock i’s month t value of βBEAR, and

29βTAIL and βBEAR are very different measures. βTAIL is measured using lead-lag regressions of excess stock returns
on a tail risk measure based on individual stocks returns whereas βBEAR captures contemporaneous covariance between
excess stock returns excess AD Bear returns.
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Xi,t is a vector of control variables for stock i measured at the end of month t. All independent

variables are winsorized at the 0.5 and 99.5% levels on a monthly basis. Our main hypothesis

predicts that stocks with higher bear betas earn lower average returns and thus the average regres-

sion coefficient on βBEAR should be negative.30 If the pricing effect of bear beta is distinct from

the phenomena captured by the control variables, the coefficient on βBEAR should remain negative

when controls are included in the regression specification. Table 8 presents the time-series averages

of the monthly cross-sectional regression coefficients along with NW-adjusted t-statistics testing

the null hypothesis that the time-series average is equal to zero.

We begin with two baseline specifications. Specification (1) has βBEAR as the only independent

variable. The average coefficient on βBEAR is −0.46 (t-statistic = −2.27), −0.68 (t-statistic =

−2.54), and −0.83 (t-statistic = −2.71) in the All Stocks, Liquid, and Large Cap sample, respec-

tively, each of which is negative and statistically significant. This is consistent with the univariate

portfolio results and indicates a strong negative relation between bear beta and expected stock

returns. We next control for exposure to CAPM market risk by including βCAPM as the second

independent variable (specification (2)). This specification is comparable to the bivariate portfolio

analysis that controls for βCAPM. Table 8 shows that, although the average coefficient on βBEAR

is slightly lower (compared to the univariate specification) when controlling for βCAPM, it remains

negative and highly statistically significant in all three samples. As was the case when using bivari-

ate portfolio analysis, the FM regression analysis indicates that the negative cross-sectional relation

between βBEAR and future stock returns is not explained by exposure to market risk.

The remaining regression specifications augment specification (2) by including additional con-

trols. We add β− in specification (3), β∆VIX in specification (4), βJUMP and βVOL in specification

(5), COSKEW in specification (6), β∆SKEW in specification (7), βTAIL in specification (8), and

IVOL in specification (9). In each of these specifications, the average coefficient on βBEAR remains

negative and statistically significant at the 5% level in all three samples, with the only exception

30 Because βBEAR is an imperfect estimate of a stock’s exposure to bear market risk, the usual errors-in-variables

concern applies. This biases our coefficients towards zero and against us finding significant results.
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being specification (7) in the All Stocks sample, which produces an average coefficient on βBEAR

that is negative and significant at the 10% level.31 In all specifications other than specification (9)

that includes IVOL, the coefficients on the control variables are not statistically significant.

We next control simultaneously for all of the risk variables that are available for the entire

sample period (βCAPM, β−, β∆VIX, COSKEW, βTAIL, and IVOL) in specification (10). Table 8

shows that, with all risk variables included as controls, the average coefficient on βBEAR remains

negative and highly statistically significant in all three samples. Consistent with the bivariate

portfolio analyses, the FM regression results provide no evidence that other risk variables explain

the negative relation between βBEAR and future stock returns.

Finally, in specification (11), we also control for firm-level characteristics that have previously

been shown to be related to expected stock returns. Specifically, we add SIZE (log of MKTCAP),

the log of the book-to-market ratio (BM), momentum (MOM), illiquidity (ILLIQ), profitability (Y),

and investment (INV) as additional control variables.32 In our portfolio analyses, we controlled

for the impact of size, value, momentum, profitability, and investment on expected stock returns

by adjusting the portfolio returns for exposures to corresponding factors. Our use of the Liquid

and Large Cap samples in the portfolio analyses controls for the liquidity effect. It is therefore

not surprising that adding the additional characteristic controls to the regression specification does

not explain the negative relation between bear beta and expected stock returns. In specification

(11), which includes the full set of controls, the average coefficient on βBEAR is −0.32 (t-statistic

= −3.08), −0.33 (t-statistic = −2.43), and −0.45 (t-statistic = −2.25) in the All Stocks, Liquid,

and Large Cap sample, respectively, each of which remains highly significant.33

The main takeaway from the results in Table 8 is clear. There is a strong negative cross-

31The decreased statistical significance is likely because values of β∆SKEW are only available for the 133 months
from December 1996 through December 2007, thus limiting the power of the test. In the Liquid and Large Cap
samples, the limited of power of the test is overcome by a more negative average coefficient, resulting in t-statistics
greater than 2.00 in magnitude.

32BM is calculated following Fama and French (1992). MOM is the 11-month stock return in months t−11 through
t− 1 inclusive (skipping month t). Y and INV are calculated following Fama and French (2015).

33Consistent with previous research, our regressions detect a negative (positive) relation between future stock
returns and each of SIZE and INV (ILLIQ, only in the All Stocks sample). The average coefficients on BM, MOM,
and Y are insignificant in our sample period. In the online appendix, we repeat the FM regression analyses using
βBEARwithout the Bayesian adjustment. As expected, we find weaker results for the univariate regressions. When
all controls are included, as in specifications (10) and (11), the coefficient on unadjusted βBEAR is negative and
statistically significant in all three samples.
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sectional relation between bear beta and expected stock returns. This relation is not explained by

other variables known to predict the cross-section of expected stock returns.

5.3 Predictive Power Beyond One Month

Our final set of tests examines whether βBEAR can predict stock returns beyond the one-month

horizon. If the negative relation between βBEAR and future stock returns does indeed reflect a risk-

based phenomenon, we expect the pricing effect to exist beyond the one-month horizon used in our

previous tests. Furthermore, the persistence of the cross-sectional relation is important for large

institutional investors who may require extended periods after calculating bear beta to accumlate

large stock positions. We therefore repeat the FM regression analyses with the same 11 sets of

independent variables that were used in Table 8, this time using excess stock returns in month

t+ k, for k ∈ {2, 3, 4, 5, 6}, as the dependent variable.

Table 9 presents the average coefficients on βBEAR from these regressions (to save space, we do

not report intercept or control variable coefficients). The univariate regressions (specification (1))

show that the relation between βBEAR and future stock returns remains negative and statistically

significant when using 2- to 6-month ahead excess returns across all three samples. Adding control

variables has little impact on the results. When all risk variables are included as independent

variables in specification (10), the average coefficients on βBEAR remain significant at the 5% level

for all forecasting horizons across the three samples. When all risk variables and characteristics

are included (specification (11)), we find the average coefficients on βBEAR remain negative and

significant at the 5% level in all cases except when using month t+ 6 excess returns in the Liquid

sample (t-statistic = −1.92) and month t + 4 excess returns in the Large Cap sample (t-statistic

= −1.89), both of which are significant at the 10% level. The results indicate that the negative

cross-sectional relation between βBEAR and future stock returns is strong for at least six months

into the future.34

34We start to find insignificant coefficients on βBEAR in some specifications when excess returns more than six
months in the future are used as the dependent variable.
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6 Conclusion

In summary, we examine the hypothesis that time-variation in investors’ ex ante assessment

of future bear market states, which we refer to as bear market risk, is a priced risk factor. We

construct a theoretically motivated option portfolio, AD Bear, that pays off $1 in bear market states

and $0 otherwise. The short-term returns of this portfolio capture bear market risk. The AD Bear

portfolio generates an economically and statistically significant negative alpha relative to standard

factor models. We test whether bear market risk is priced in the cross section of stocks by examining

the relation between bear beta – stock-level sensitivity to AD Bear portfolio returns – and expected

stock returns. Portfolio and regression analyses demonstrate that high-bear beta stocks, i.e. stocks

that outperform when bear market risk increases, earn low average returns. This negative cross-

sectional relation between bear beta and expected stock returns remains strong after controlling for

a battery of previously documented risk and characteristic-based pricing effects. Supportive of a

risk-based interpretation of our results, portfolios sorted on bear beta exhibit strong cross-sectional

variation in post-formation exposure to AD Bear returns, the negative relation between bear beta

and future stock returns remains strong even when the sample is restricted to liquid and large cap

stocks, and the return predictability persists for at least six months into the future. We conclude

that bear market risk is a priced source of risk distinct from previously identified factors.
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Appendix A AD Bear Portfolio Sensitivities

In this appendix, we derive the sensitivity of the AD Bear returns to continuous consumption

innovations (dBt), negative jumps in consumption (Zt), and innovations in jump intensity (dBλ,t).

Assuming a recursive utility function and that the market portfolio is a levered claim to aggre-

gate consumption (i.e., dividend Dt = Cφt ), Wachter (2013) shows that the evolution of the price

of the market portfolio, Ft, is given by

dFt
Ft

= µF,tdt+ φσdBt + bF,λσλ
√
λtdBλ,t + (eφZt − 1)dNt, (A.1)

and the evolution of the state price density πt is defined by

dπt
πt−

= µπ,tdt− γσdBt + bπ,λσλ
√
λtdBλ,t + (e−γZt − 1)dNt (A.2)

where φ is the market portfolio’s leverage with respect to aggregate consumption, γ is the risk

aversion parameter, and bF,λ and bπ,λ are the sensitivities of the market return and the stochastic

discount factor, respectively, to dBλ,t. Because heightened jump intensity increases marginal utility

and depresses stock prices, bF,λ < 0 and bπ,λ > 0.

The AD Bear portfolio is defined to generate payoff XT of $1 at expiration date T if the time T

price of the market portfolio is below a threshold identified by K. Specifically, XT = 1
{
FT
F0
≤ K

}
.

Therefore, at any point in time t < T , the price of the AD Bear portfolio is given by

Xt = EQt

(
e−

∫ T
t rτdτ1

{
FT
F0
≤ K

})
(A.3)

where EQ is the risk-neutral expectation function and rs is the time s instantaneous risk-free rate.

While equation (A.3) can be solved using numerical methods, it does not have an analytical

solution. We make two approximations to arrive at an approximate analytical solutionthat delivers

transparent economic intuition.

Approximation 1: We assume the instantaneous risk-free rate rt over the time interval from 0 to

T is deterministic. In our empirical set-up, T is about 1 month after t and thus the approximation

27



should be quite accurate. Under this assumption,

dXt = EQt+∆t

(
1

{
FT
F0
≤ K

})
e−rt(T−t−∆t) − EQt

(
1

{
FT
F0
≤ K

})
e−rt(T−t)

=

[
EQt+∆t

(
1

{
FT
F0
≤ K

})
− EQt

(
1

{
FT
F0
≤ K

})]
e−rt(T−t−∆t)

+ EQt

(
1

{
FT
F0
≤ K

})(
e−rt(T−t−∆t) − e−rt(T−t)

)
=

[
EQt+∆t

(
1

{
FT
F0
≤ K

})
− EQt

(
1

{
FT
F0
≤ K

})]
e−rt(T−t−∆t) +Xt

(
ert∆t − 1

)
(A.4)

Letting Pt = EQt

(
1
{
FT
F0
≤ K

})
gives

dXt = dPte
−rt(T−t−∆t) +Xtrt∆t. (A.5)

In the following analysis, we focus on the sensitivity of dPt to the fundamental risks, which is

closely related to the sensitivity of dXt to the fundamental risks.

Under Wachter’s model, FT
F0

= exp
(
φlog

(
CT
C0

)
+ bF,λ (λT − λ0)

)
(Seo and Wachter (2015)),

giving

Pt = EQt (1 {φlog (CT ) + bF,λλT ≤ log (K) + bF,λλ0 + φlog (C0)}) (A.6)

Approximation 2: λT follows a CIR model and does not have a closed-form solution. However,

over the short interval T , λT can be approximated by a Vasicek model with constant volatility and

thus follows a normal distribution:

λT ∼ N
((

1− e−κτ
)
λ+ λte

−κτ ,
σ2
λλt
2κ

(
1− e−2κτ

))
. (A.7)

Using these two approximations, we get an analytical solution.

log (CT ) follows a normal distribution with mean log (Ct) +
(
µ− 1

2σ
2
)
τ and variance σ2τ with
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τ = T − t if there is no jump. We also assume Zi is of constant size µZ < 0. Following Merton

(1976), we know that conditional on NT −Nt = n

φlog (CT ) + bφλT ∼ N
(
µn, ν

2
)

(A.8)

where

µn = φlog (Ct) + µQc (T ) + µQλ (T ) + bφλte
−κ(T−t) + nφµZ (A.9)

and

ν2 = φ2σ2T + b2φ
σ2
λλt
2κ

(
1− e−2κT

)
(A.10)

where µQλ (τ) and µQc (T ) capture the drift terms unrelated to λt and log (Ct), respectively, under

the Q measure.

Therefore,

Pt =
∞∑
n=0

e−λt(T−t) (λt (T − t))n

n!
N (dn) (A.11)

where

dn =
log (K) + bφλ0 + φlog (C0)− µn

ν
=
ηn
ν

(A.12)

and ηn = log (K) + bφλ0 + φlog (C0)− µn < 0.

We now examine the log excess returns of the AD Bear portfolio resulting from different types

of shocks. Specifically,

∆Pt =
∂Pt
∂Bt

dBt +
∂Pt
∂Bλ,t

dBλ,t +
∂Pt
∂Jt

dJt

First, we solve for the effect of dBt on Pt. Because dBt only affects dn and we have ∆dn
dBt

= −φσ
ν ,
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we have

∂Pt
∂Bt

=
∞∑
n=0

e−λt(T−t) (λt (T − t))n

n!
N
′
(dn)×

(
−φσ
ν

)

= e−λt(T−t)

( ∞∑
n=0

δn

)
×
(
−φσ
ν

)
(A.13)

where35

δn =
(λt (T − t))n

n!

1√
2π
exp

{
−1

2

[
log (K) + bφλ0 + φlog (C0)− µn

ν

]2
}

. (A.14)

Next , the first-order effect of Zt on Pt is

∂Pt
∂Jt

= e−λt(T−t)

( ∞∑
n=0

δn

)
×−φµZ

ν
+ o (Zt) (A.15)

where o
(
Z2
t

)
is a second and higher order effect.

Finally, we examine the effect of dBλ,t on Pt. Letting

∆dn
dBλ,t

=

−bφe−κ(T−t)

ν
−

(log (K) + bφλ0 + φlog (C0)− µn) b2φ
σ2
λ

2κ

(
1− e−2κT

)
ν2

σλ√λt (A.16)

we have36

35 ∂δn
∂log(K)

= δn [µn − (log (K) + bφλ0 + φlog (C0))]. Because µn − (log (K) + bφλ0 + φlog (C0)) > 0, ∂δn
∂log(K)

> 0.
36Note that
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∂Pt
∂Bλ,t

=
∂e−λt(T−t) (λt (T − t))n

∂λt
N (dn)× σλ

√
λt + e−λt(T−t)

( ∞∑
n=0

δn

)
× ∆dn
dBλ,t

= e−λt(T−t) (T − t)

[ ∞∑
n=0

δn
−φµZ
ν

]
× σλ

√
λt + e−λt(T−t)

( ∞∑
n=0

δn

)
× ∆dn
dBλ,t

= e−λt(T−t)

( ∞∑
n=0

δn

)
×

[− (T − t)φµZ ]︸ ︷︷ ︸
more future jumps

+

 −
bφe
−κT

ν︸ ︷︷ ︸
due to changes in equity price

−
ηnb

2
φ
σ2
λ

2κ

(
1− e−2κT

)
ν2︸ ︷︷ ︸

due to changes in equity vol


×

σλ
√
λt. (A.17)

∂
(
e−λt(T−t) (λt (T − t))n

)
∂λt

=
∂
[
e−λt(T−t)+nlog(λt(T−t))

]
∂λt

= e−λt(T−t)+nlog(λt(T−t)) ×
[
− (T − t) +

n

λt

]
= e−λt(T−t) (λt (T − t))n ×

[
− (T − t) +

n

λt

]
∂
∑∞
n=0

(
e−λt(T−t)(λt(T−t))n

n!

)
∂λt

N (dn)

=

∞∑
n=0

(
e−λt(T−t) (λt (T − t))n

n!
(− (T − t)) +

e−λt(T−t) (λt (T − t))n−1

(n− 1)!
(T − t)

)
N (dn)

= e−λt(T−t) (T − t)

[
∞∑
n=1

(
− (λt (T − t))n

n!
+

(λt (T − t))n−1

(n− 1)!

)
N (dn) −N (d0)

]

= e−λt(T−t) (T − t)

[
∞∑
n=1

(λt (T − t))n−1

(n− 1)!
[N (dn) −N (dn−1)]

]

= e−λt(T−t) (T − t)

[
∞∑
n=1

(λt (T − t))n−1

(n− 1)!
N
′
(dn−1)

−φµZ
ν

]

= e−λt(T−t) (T − t)

[
∞∑
n=0

(λt (T − t))n

n!
N
′
(dn)

−φµZ
ν

]
.
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Appendix B Bayes Shrinkage Method

To calculate bear beta, we run rolling-window ordinary least squares (OLS) regressions for each

stock to estimate sensitivities to MKT and AD Bear excess returns and adjust these estimates using

a Bayes shrinkage method. This appendix presents the derivation of our measure and discusses its

implementation.

We develop our measure by considering the following regression model:

Ri,d = βMKT
i MKTd + βBEAR

i RAD Bear,d + εi,d (B.1)

where Ri,d is the demeaned return of stock i for time d, MKTd is the contemporaneous demeaned

market excess return, and RAD Bear,d is the contemporaneous demeaned AD Bear excess return.

We consider demeaned returns because doing so alleviates the need to include an intercept term in

the regression specification, thereby simplifying the derivation. We let βi =

[
βMKT
i βBEAR

i

]′
be

the vector of true parameter values and β̂i =

[
β̂MKT
i β̂BEAR

i

]′
be slope coefficients generated by

running an OLS regression specified by equation (B.1).

We follow Fama and French (1997) and take the prior distribution of βi to be multivariate

normal (MVN) with mean vector β and covariance matrix Σ. We also assume that εi,d follows

a normal distribution with mean zero and variance σ2
i . The posterior distribution of βi is then

multivariate normal with mean β̃i given by

β̃i = β +

(
Σ−1 +

X ′X

σ2
i

)−1 X ′X

σ2
i

(
β̂i − β

)
=

(
Σ−1 +

X ′X

σ2
i

)−1

Σ−1β +

(
Σ−1 +

X ′X

σ2
i

)−1 X ′X

σ2
i

β̂i (B.2)

where X is the matrix of demeaned explanatory returns. Intuitively, β̃i shrinks the OLS estimate

β̂i toward the prior mean β to correct for the sampling errors. Higher (lower) OLS sampling errors,

captured by X′X
σ2
i

, result in more (less) weight being placed on the prior mean β and less (more)

weight being placed on the OLS estimate β̂i.

32



Using the methodology described above, we calculate a value of bear beta for each stock i at

the end of each month t as follows. At the end of each month t, we begin by running a standard

OLS regression of five-day AD Bear excess returns (RAD Bear) on contemporaneous five-day market

portfolio excess returns (MKT) using data from all five trading day periods ending on days d in

months t− 11 through t, inclusive. The regression specification is

RAD Bear,d = δ0 + δ1MKTd + ζd. (B.3)

The regression residuals, ζd, capture the component of the AD Bear excess return that is orthogonal

to the market return. As discussed in our theoretical development of the AD Bear portfolio, ζd

captures bear market risk.

For each stock i, we then regress the five-day excess stock returns on the contemporaneous

market portfolio excess returns and ζd using data from the same period that is used estimate

regression (B.3). To calculate the five-day stock return Ri,d, we require that a return for each of

the five days be available. We demean the market return within the regression period to eliminate

the intercept coefficient from the regression. The regression specification is

Ri,d = βm
i,tMKTd + βBEAR

i,t ζd + εi,d. (B.4)

We denote the vector slope coefficients estimated from the OLS regression (B.1) β̂i,t =

[
β̂m
i,t β̂BEAR

i,t

]
.

The subscript t indicates values generated by the regression run at the end of month t. We require

a minimum of 183 observations, or 180 degrees of freedom, to run the regression.

To implement the Bayes shrinkage method, we need values for the mean and covariance matrix

of the prior distribution. The mean of the prior distribution used to calculate Bear beta for all

stocks i at the end of month t, which we denote βt =

[
βm
t βBEAR

t

]
is taken to be the average

value of β̂i,t over all observations of β̂i,t generated in month t and prior to month t. Specifically,

βt =

∑
i,τ≤t β̂i,τ

N
(B.5)
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where N is the number of valid values of β̂i,τ calculated across all stocks i for months τ ≤ t. To

calculate the covariance matrix of the prior distribution, we make the assumption that βm
i,t and

βBEAR
i,t are uncorrelated. This makes the covariance matrix of the prior distribution diagonal. The

covariance matrix of the prior distribution used for all stocks at the end of month t, which we

denote Σt, is therefore taken to be the matrix with diagonal entries equal to the pooled variances

of β̂m
i,t and β̂BEAR

i,t and off-diagonal entries set to zero:

Σt =

 σ2
m,t 0

0 σ2
BEAR,t

 (B.6)

where

σ2
m,t =

∑
i,τ≤t

(
β̂m
i,τ − βm

t

)2

N − 1
(B.7)

and

σ2
BEAR,t =

∑
i,τ≤t

(
β̂BEAR
i,τ − βBEAR

t

)2

N − 1
, (B.8)

both of which are calculated across all stocks i for months τ ≤ t.

The last remaining component needed to implement the Bayes shrinkage method is an estimate

of the covariance matrix of the OLS estimates β̂m
i,t and β̂BEAR

i,t . We estimate this matrix to be the

standard OLS estimate generated by regression (B.4). Since MKTd and ζd are orthogonal, this

matrix is diagonal and given by

X ′tXt

σ2
i,t

=

 v−2
i,m,t 0

0 v−2
i,BEAR,t

 (B.9)

where Xt is the matrix of values of MKTd and ζd used in regression (B.4), and σ2
i,t is the variance

of the residuals from the regression. v2
m and v2

Bear are therefore the variances of the regression

coefficients β̂m
i,t and β̂BEAR

i,t from regression (B.4), respectively, under the OLS assumptions.

The mean of the posterior distribution, β̃i,t, is then very easy to compute:
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β̃i,t =


 σ−2

m,t 0

0 σ−2
BEAR,t

+

 v−2
m,t 0

0 v−2
BEAR,t



−1  σ−2

m,t 0

0 σ−2
BEAR,t

βt
+


 σ−2

m,t 0

0 σ−2
BEAR,t

+

 v−2
m,t 0

0 v−2
BEAR,t



−1  v−2

m,t 0

0 v−2
BEAR,t

 β̂i,t
=

 σ−2
m,t

σ−2
m,t+v

−2
m,t

0

0
σ−2

BEAR,t

σ−2
BEAR,t+v

−2
BEAR,t

β +

 v−2
m,t

σ−2
m,t+v

−2
m,t

0

0
v−2
BEAR,t

σ−2
BEAR,t+v

−2
BEAR,t

 β̂i,t (B.10)

The final Bayes shrinkage method value of bear beta used in our empirical analyses is:37

βBEAR
i,t,Bayes =

σ−2
BEAR,t

σ−2
BEAR,t + v−2

BEAR,t

βBEAR
t +

v−2
BEAR,t

σ−2
BEAR,t + v−2

BEAR,t

β̂BEAR
i,t . (B.11)

37For brevity, we omit the subscripts i, t, Bayes in the main paper.
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Figure 1: Construction of AD Bear
The figure below illustrates the construction of the AD Bear portfolio. The solid black line shows
the payoff function of the AD Bear portfolio. The dashed red line shows the payoff function of the
long put position. The dotted green line shows the payoff function of the short put position. The
dash-dotted blue line shows the payoff function of the theoretical AD Bear portfolio.
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Figure 2: AD Bear CAPM Residuals
The figure below shows the residuals from a regression of AD Bear excess returns on market excess
returns (MKT). The numbers 1 - 5 indicate the five largest residuals, in decreasing order.
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Table 1: Sensitivities of Market Portfolio and AD Bear Returns to Three Sources of
Fundamental Risk

The table shows the sensitivities of the stochastic discount factor or SDF ( dπtπt−
), the market

portfolio return (dFtFt ), and the AD Bear portfolio return (dXtXt
) to each of the three fundamental

risks in Wachter (2013)’s model under a first-order Taylor expansion. dBt is a standard Brownian
motion capturing continuous consumption shocks. Zt is the realized consumption jump at time t.
dBλ,t is the shock to the time-varying intensity of future jumps. ∆ = e−λtτ (

∑∞
n=0 δn) ν−1 is the

ratio between the sensitivity of dXt
Xt

to dBt and the sensitivity of dFt
Ft

to dBt. Refer to equations (1)
to (2) for more parameter definitions. Hedged AD Bear Return is the return to a portfolio that
invests in one unit of the AD Bear portfolio and hedges the market exposure by investing ∆Xt in
the market portfolio where Xt is the price of the AD Bear portfolio. bF,λ is negative. γ, φ, bπ,λand
bX,λ are positive.

Source SDF Market Return AD Bear Return Hedged AD Bear Return

of Risk
(
dπt
π
t−

) (
dFt
Ft

) (
dXt
Xt

) (
dXt
Xt

)
+ ∆

(
dFt
Ft

)
dBt −γ φ −∆φ 0
Zt −γZt φZt −∆φZt 0

dBλ,t bπ,λ bF,λ − ∆ bF,λ + bX,λ bX,λ
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Table 2: Summary Statistics for AD Bear Portfolio and Factor Returns
The table below presents summary statistics for the five-day excess returns of the AD Bear
portfolio and standard risk factors. , The market factor (MKT), the size factor (SMB and
SMB5), the value factor (HML), the momentum factor (MOM), the profitability factor (RMW),
the investment factor (CMA) are from Ken French’s website, with SMB the size factor used
in Fama and French (1992) and SMB5 the size factor used in Fama and French (2015). ME,
ROE, and IA are the size factor, the profitability factor, and the investment factor used in the
Hou et al. (2015). The unscaled AD Bear excess returns (AD Bear (Unscaled)) are the actual
excess returns generated by the AD Bear portfolio. The scaled (AD Bear) excess returns are
the unscaled excess returns divided by 28.87836. The scaling factor 28.87836 was chosen so that
the standard deviation of the scaled AD Bear excess returns is equal to the standard deviation
of the MKT factor returns. The five-day excess returns of MKT, SMB, HML, MOM, SMB5,
RMW, CMA, ME, IA, and ROE are calculated by first compounding the daily gross returns
of the factors over a five-day period and then subtracting the contemporaneous five-day risk
free rate. The table presents the mean (Mean), standard deviation (SD), skewness (Skew),
minimum value (Min), median value (Median), 95th percentile value (95%), 99th percentile
value (99%), and maximum value (Max) for the daily five-day overlapping excess returns
of the AD Bear portfolio and each of the factors. The returns cover portfolio formation dates
(return dates) from January 4, 1996 (January 11, 1996) through August 24, 2015 (August 31, 2015).

Factor Mean SD Skew Min Median 95% 99% Max

AD Bear (Unscaled) −8.12 74.72 2.81 −98.31 −28.48 131.60 269.91 999.68
AD Bear −0.28 2.59 2.81 −3.40 −0.99 4.56 9.35 34.62
MKT 0.15 2.59 −0.49 −18.43 0.31 3.79 6.53 19.49
SMB 0.04 1.46 −0.48 −12.19 0.08 2.14 3.89 7.52
HML 0.05 1.52 0.54 −8.29 0.02 2.32 5.17 12.47
MOM 0.14 2.45 −0.93 −16.45 0.25 3.59 6.48 14.21
ME 0.07 1.46 −0.34 −11.12 0.10 2.19 3.93 7.79
ROE 0.11 1.27 0.10 −6.36 0.13 2.03 3.93 10.14
IA 0.06 1.03 0.65 −5.66 0.01 1.70 3.09 8.61
SMB5 0.05 1.41 −0.42 −11.81 0.09 2.09 3.70 7.36
RMW 0.09 1.21 0.75 −7.09 0.06 1.89 3.89 9.88
CMA 0.06 1.04 0.81 −5.15 −0.01 1.83 3.27 8.99
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Table 3: Factor Analysis of AD Bear Portfolio Returns
The table below presents the results of time-series regressions of AD Bear portfolio excess returns
on standard factors. The table shows the intercept coefficient (Excess Return or α) and slope
coefficients (β), adjusted R-squared (Adj. R2), and number of observations (n) for each regression.
t-statistics, adjusted following Newey and West (1987) using 22 lags, testing the null hypothesis
of a zero intercept or slope coefficient, are shown in parentheses below the corresponding coefficient.

Value E
x
ce

ss
R

et
u

rn

C
A

P
M

F
F

3

F
F

C

Q F
F

5

Excess Return or α −0.28 −0.15 −0.16 −0.14 −0.13 −0.13
(−3.60) (−3.83) (−3.85) (−3.23) (−3.09) (−2.97)

βMKT −0.81 −0.81 −0.85 −0.85 −0.87
(−18.58) (−18.18) (−20.31) (−18.07) (−19.30)

βSMB 0.06 0.07
(1.89) (2.15)

βHML 0.05 −0.00 0.16
(1.00) (−0.09) (2.86)

βMOM −0.11
(−4.40)

βME 0.04
(1.20)

βROE −0.14
(−2.84)

βIA −0.06
(−1.18)

βSMB5 0.02
(0.63)

βRMW −0.16
(−3.41)

βCMA −0.25
(−3.97)

Adj. R2 0.00% 65.32% 65.47% 66.41% 65.88% 66.39%
n 4910 4910 4910 4910 4910 4910
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Table 4: Summary Statistics
The table below presents cross-sectional summary statistics for bear beta (βBEAR), market
capitalization (MKTCAP), and Amihud (2002) illiquidity (ILLIQ). The All Stocks sample includes
all U.S.-based stocks in the CRSP database with a valid value of βBEAR. The Liquid sample is
the subset of the All Stocks sample with values of ILLIQ lower than the 80th percentile value of
ILLIQ among NYSE stocks. The Large Cap sample is the subset of the All Stocks sample with
MKTCAP greater than the 50th percentile MKTCAP value among NYSE stocks. This table shows
the time-series averages of the monthly cross-sectional mean (Mean), standard deviation (SD),
skewness (Skew), minimum value (Min), 25th percentile value (25%), median value (Median),
75th percentile value (75%), maximum value (Max), and number of observations with valid values
(n) for βBEAR, MKTCAP, and ILLIQ using each sample. The summary statistics cover the 225
months t from December 1996 through August 2015.

Sample Variable Mean SD Skew Min 25% Median 75% Max n

All Stocks βBEAR 0.06 0.40 0.23 −1.67 −0.19 0.05 0.30 2.05 4787
MKTCAP 3176 15163.11 13.66 1 75 308 1335 406290 4784
ILLIQ 197.52 1081.87 17.41 0.00 0.45 4.75 48.71 36793.82 4502

Liquid βBEAR 0.08 0.38 0.25 −1.39 −0.16 0.06 0.30 1.69 2041
MKTCAP 6995 22304.50 9.13 69 743 1600 4368 406290 2041
ILLIQ 0.69 0.78 1.26 0.00 0.09 0.34 1.06 3.01 2041

Large Cap βBEAR 0.04 0.34 0.30 −1.16 −0.17 0.02 0.24 1.47 1005
MKTCAP 13159 30307.80 6.60 1598 2473 4316 10660 406290 1005
ILLIQ 0.26 1.52 18.78 0.00 0.03 0.08 0.20 42.56 1005
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Table 5: βBEAR-Sorted Portfolios Returns
The table below presents the results of univariate portfolio analyses of the relation between βBEAR

and future stock returns. Each month t, all stocks in the sample are sorted into decile portfolios
based on an ascending sort of βBEAR. The columns labeled “βBEAR 1” through “βBEAR 10” present
results for the first through 10th βBEAR decile portfolios. The column labeled “βBEAR 10−1”
presents results for a portfolio that is long stocks in the 10th βBEAR decile portfolio and short
stocks in the first βBEAR decile portfolio. The table shows the average month t+ 1 value-weighted
excess return (Excess Return), alphas (α) relative to the CAPM, FF3, FFC, Q, and FF5 factor
models, and factor sensitivities relative to the FF5 factors. Newey and West (1987) t-statistic using
three lags are presented in parentheses. The row labeled “Pre-Formation” shows the time-series
average of the monthly value-weighted average values of pre-formation βBEAR for each of the
portfolios. The row labeled “Post-Formation” presents the corresponding post-formation βBEAR,
calculated as the slope coefficient on AD Bear portfolio excess returns from a regression of the
daily five-day overlapping portfolio excess returns on the contemporaneous MKT and AD Bear
portfolio excess returns. t-statistics for the post-formation sensitivities are adjusted following
Newey and West (1987) using 22 lags and reported in parentheses. Panels A, B, and C present
results for the All Stocks, Liquid, and Large Cap samples, respectively.

Panel A: All Stocks Sample

Model Value β
B

E
A

R
1

β
B

E
A

R
2

β
B

E
A

R
3

β
B

E
A

R
4

β
B

E
A

R
5

β
B

E
A

R
6

β
B

E
A

R
7

β
B

E
A

R
8

β
B

E
A

R
9

β
B

E
A

R
10

β
B

E
A

R
10

-1

Excess Return Excess Returns 0.99 0.77 0.68 0.47 0.61 0.42 0.44 0.42 0.27 −0.14 −1.13
(2.51) (2.37) (2.33) (1.53) (1.87) (1.09) (1.11) (0.91) (0.54) (−0.23) (−2.67)

CAPM α 0.47 0.30 0.24 0.01 0.09 −0.11 −0.13 −0.21 −0.46 −1.00 −1.48
(2.46) (1.85) (2.15) (0.08) (1.00) (−0.69) (−0.82) (−1.18) (−2.40) (−3.51) (−3.59)

FF3 α 0.39 0.26 0.22 −0.00 0.11 −0.07 −0.08 −0.19 −0.43 −0.94 −1.33
(2.23) (1.88) (2.28) (−0.03) (1.13) (−0.53) (−0.58) (−1.21) (−2.56) (−3.88) (−3.92)

FFC α 0.43 0.29 0.23 0.01 0.12 −0.07 −0.06 −0.15 −0.37 −0.82 −1.25
(2.21) (2.03) (2.24) (0.11) (0.99) (−0.53) (−0.46) (−0.84) (−2.14) (−3.22) (−3.38)

Q α 0.34 0.17 0.22 0.04 0.13 0.03 0.01 −0.03 −0.23 −0.51 −0.84
(1.70) (1.24) (1.82) (0.26) (0.94) (0.22) (0.08) (−0.20) (−1.45) (−1.92) (−2.41)

FF5 α 0.25 0.16 0.10 −0.03 0.10 −0.03 0.04 0.00 −0.17 −0.46 −0.71
(1.34) (1.23) (1.02) (−0.26) (0.94) (−0.28) (0.30) (0.02) (−1.20) (−2.07) (−2.29)

βMKT 1.10 1.02 0.94 0.91 1.01 0.96 1.00 1.06 1.19 1.25 0.16
(19.41) (19.02) (26.00) (17.56) (28.59) (24.93) (28.33) (20.53) (21.39) (15.96) (1.39)

βSMB5 0.02 −0.19 −0.03 −0.00 −0.04 0.05 0.02 0.13 0.24 0.37 0.35
(0.24) (−2.35) (−0.46) (−0.04) (−0.85) (1.13) (0.29) (2.11) (2.72) (3.00) (2.00)

βHML 0.09 0.10 −0.06 0.03 −0.05 −0.12 −0.13 −0.01 0.07 −0.10 −0.19
(0.86) (0.90) (−0.85) (0.35) (−0.66) (−1.93) (−1.94) (−0.05) (0.57) (−0.59) (−0.77)

βRMW 0.10 0.01 0.16 0.05 −0.01 0.01 −0.18 −0.28 −0.25 −0.75 −0.85
(0.60) (0.08) (1.98) (0.82) (−0.13) (0.11) (−2.13) (−2.68) (−1.75) (−6.05) (−3.26)

βCMA 0.39 0.38 0.23 0.03 0.02 −0.16 −0.14 −0.29 −0.61 −0.60 −0.99
(1.63) (1.61) (2.36) (0.19) (0.17) (−1.08) (−1.01) (−1.74) (−3.81) (−2.75) (−2.39)

Pre-Formation βBEAR −0.58 −0.32 −0.19 −0.09 0.00 0.09 0.19 0.30 0.45 0.78 1.35

Post-Formation βBEAR −0.04 −0.02 −0.03 −0.03 0.00 −0.01 0.03 0.10 0.16 0.18 0.21
(−1.44) (−0.82) (−1.41) (−1.91) (0.18) (−0.62) (1.43) (2.74) (3.74) (3.20) (2.83)
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Table 5: βBEAR-Sorted Portfolios Returns - continued

Panel B: Liquid Sample

Model Value β
B

E
A

R
1

β
B

E
A

R
2

β
B

E
A

R
3

β
B

E
A

R
4

β
B

E
A

R
5

β
B

E
A

R
6

β
B

E
A

R
7

β
B

E
A

R
8

β
B

E
A

R
9

β
B

E
A

R
10

β
B

E
A

R
1
0-

1

Excess Return Excess Returns 0.92 0.81 0.68 0.59 0.60 0.41 0.39 0.44 0.23 −0.16 −1.08
(2.45) (2.70) (2.26) (2.08) (1.70) (1.06) (0.99) (0.98) (0.48) (−0.24) (−2.41)

CAPM α 0.44 0.37 0.23 0.15 0.10 −0.15 −0.19 −0.18 −0.50 −1.04 −1.48
(2.29) (2.38) (1.81) (1.16) (0.92) (−1.06) (−1.32) (−0.93) (−2.39) (−3.46) (−3.48)

FF3 α 0.37 0.34 0.21 0.12 0.11 −0.08 −0.14 −0.13 −0.46 −0.95 −1.33
(2.28) (2.52) (1.84) (1.16) (0.99) (−0.65) (−1.09) (−0.84) (−2.62) (−3.83) (−4.02)

FFC α 0.41 0.36 0.19 0.11 0.13 −0.04 −0.12 −0.05 −0.39 −0.81 −1.22
(2.26) (2.52) (1.51) (0.99) (0.98) (−0.26) (−0.86) (−0.34) (−2.15) (−3.07) (−3.38)

Q α 0.32 0.26 0.11 0.05 0.13 0.03 −0.04 0.05 −0.24 −0.52 −0.85
(1.84) (1.81) (0.92) (0.41) (0.93) (0.18) (−0.34) (0.29) (−1.34) (−1.87) (−2.49)

FF5 α 0.23 0.22 0.04 0.02 0.11 −0.04 0.01 0.08 −0.23 −0.47 −0.70
(1.35) (1.74) (0.44) (0.16) (0.97) (−0.30) (0.12) (0.57) (−1.44) (−2.06) (−2.39)

βMKT 1.05 0.96 1.01 0.93 0.98 1.03 1.01 1.04 1.21 1.31 0.27
(18.43) (22.61) (22.85) (41.99) (25.34) (25.98) (31.83) (18.36) (20.18) (16.12) (2.26)

βSMB5 −0.06 −0.17 −0.16 −0.02 −0.05 −0.01 −0.03 0.04 0.22 0.26 0.32
(−0.70) (−2.36) (−2.27) (−0.26) (−1.14) (−0.26) (−0.64) (0.64) (2.34) (1.82) (1.72)

βHML 0.07 0.07 −0.02 0.03 0.05 −0.15 −0.06 −0.01 0.04 −0.07 −0.14
(0.66) (0.65) (−0.16) (0.40) (0.75) (−2.33) (−1.06) (−0.11) (0.26) (−0.41) (−0.56)

βRMW 0.11 0.07 0.20 0.17 0.05 0.05 −0.20 −0.25 −0.23 −0.72 −0.82
(0.63) (0.68) (2.97) (2.97) (0.83) (0.67) (−2.40) (−2.08) (−1.36) (−5.27) (−3.10)

βCMA 0.39 0.33 0.32 0.13 −0.11 −0.24 −0.25 −0.40 −0.58 −0.70 −1.08
(1.48) (1.94) (2.10) (2.06) (−0.93) (−1.61) (−1.93) (−1.99) (−3.53) (−3.10) (−2.42)

Pre-Formation βBEAR −0.51 −0.28 −0.16 −0.07 0.02 0.10 0.19 0.30 0.45 0.76 1.27

Post-Formation βBEAR −0.04 −0.04 −0.05 −0.02 −0.04 −0.01 0.01 0.10 0.16 0.19 0.22
(−1.22) (−1.52) (−2.09) (−1.24) (−2.01) (−0.46) (0.69) (2.08) (3.52) (3.35) (2.81)

Panel C: Large Cap Sample

Model Value β
B

E
A

R
1

β
B

E
A

R
2

β
B

E
A

R
3

β
B

E
A

R
4

β
B

E
A

R
5

β
B

E
A

R
6

β
B

E
A

R
7

β
B

E
A

R
8

β
B

E
A

R
9

β
B

E
A

R
10

β
B

E
A

R
10

-1

Excess Return Excess Returns 0.81 0.83 0.65 0.61 0.63 0.60 0.39 0.20 0.35 −0.15 −0.95
(2.31) (2.70) (2.37) (2.01) (1.99) (1.79) (1.03) (0.49) (0.74) (−0.24) (−2.24)

CAPM α 0.34 0.39 0.24 0.17 0.18 0.10 −0.17 −0.38 −0.33 −0.99 −1.33
(2.00) (2.79) (1.51) (1.40) (1.17) (1.11) (−1.12) (−2.22) (−1.58) (−3.27) (−3.21)

FF3 α 0.29 0.38 0.21 0.16 0.16 0.10 −0.09 −0.32 −0.26 −0.88 −1.17
(2.05) (2.86) (1.73) (1.39) (1.24) (1.08) (−0.67) (−2.21) (−1.54) (−3.75) (−3.88)

FFC α 0.31 0.37 0.18 0.14 0.12 0.08 −0.09 −0.29 −0.22 −0.77 −1.08
(2.00) (2.55) (1.37) (1.15) (0.97) (0.82) (−0.54) (−2.02) (−1.17) (−3.13) (−3.37)

Q α 0.22 0.26 0.08 0.06 0.03 0.08 −0.06 −0.20 −0.05 −0.50 −0.72
(1.47) (1.90) (0.71) (0.50) (0.20) (0.83) (−0.38) (−1.25) (−0.28) (−1.94) (−2.41)

FF5 α 0.15 0.25 0.05 0.04 0.03 0.06 −0.05 −0.15 −0.02 −0.40 −0.55
(1.03) (1.80) (0.50) (0.31) (0.26) (0.67) (−0.33) (−1.18) (−0.11) (−1.94) (−2.17)

βMKT 1.02 0.97 0.94 0.95 0.95 0.97 1.03 1.00 1.13 1.26 0.24
(20.24) (21.57) (35.84) (25.67) (29.87) (35.55) (20.73) (21.29) (18.31) (16.12) (2.18)

βSMB5 −0.11 −0.21 −0.15 −0.16 −0.02 0.04 −0.09 −0.04 0.02 0.10 0.21
(−1.33) (−3.32) (−3.00) (−3.30) (−0.35) (0.84) (−1.71) (−0.64) (0.33) (0.75) (1.15)

βHML 0.08 0.03 0.07 0.05 −0.03 −0.00 −0.14 −0.06 0.00 −0.08 −0.16
(0.72) (0.30) (0.98) (0.69) (−0.39) (−0.07) (−2.32) (−0.61) (0.02) (−0.48) (−0.64)

βRMW 0.13 0.12 0.26 0.16 0.19 0.11 0.01 −0.23 −0.30 −0.73 −0.86
(0.81) (1.66) (3.60) (2.37) (2.96) (2.16) (0.11) (−2.02) (−2.21) (−5.39) (−3.34)

βCMA 0.35 0.31 0.20 0.20 0.19 −0.05 −0.19 −0.25 −0.48 −0.65 −1.00
(1.49) (2.64) (1.81) (1.98) (2.56) (−0.81) (−1.42) (−1.31) (−2.98) (−3.03) (−2.41)

Pre-Formation βBEAR −0.48 −0.27 −0.17 −0.09 −0.01 0.06 0.14 0.24 0.37 0.66 1.14

Post-Formation βBEAR −0.03 −0.05 −0.06 −0.03 −0.03 −0.05 −0.01 0.02 0.14 0.20 0.22
(−0.92) (−2.19) (−2.61) (−1.57) (−1.28) (−3.68) (−0.31) (0.93) (2.78) (3.75) (2.90)
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Table 6: βBEAR-Sorted Portfolio Average Risk Variables
The table below presents average values of risk variables for stocks in each of the univariate decile
portfolios formed by sorting on βBEAR. Each month t, all stocks in the sample are sorted into
decile portfolios based on an ascending sort of βBEAR. The columns labeled βBEAR 1 through
βBEAR 10 present results for the first through 10th decile βBEAR portfolios. The table shows the
time-series average of the monthly equal-weighted month t values for each risk variable in each
portfolio. Results for βJUMP and βVOL cover the 184 months t from December 1996 through March
2012. Results for β∆SKEW cover the 133 months t from December 1996 through December 2007.
All other results cover the 225 months t from December 1996 through August 2015. Panels A, B,
and C present results for the All Stocks, Liquid, and Large Cap samples, respectively.

Panel A: All Stocks Sample

Variable β
B

E
A

R
1

β
B
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β
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A
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A
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5

β
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A

R
6

β
B

E
A
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7

β
B

E
A

R
8

β
B

E
A

R
9

β
B

E
A

R
10

βCAPM 0.77 0.76 0.75 0.76 0.77 0.81 0.86 0.93 1.01 1.14
β− 0.96 0.87 0.84 0.83 0.84 0.86 0.90 0.96 1.03 1.13
β− − βCAPM 0.19 0.12 0.09 0.07 0.06 0.05 0.04 0.03 0.02 −0.02
β∆VIX −0.04 −0.01 −0.01 0.01 0.01 0.02 0.03 0.05 0.06 0.11
βVOL −0.07 −0.03 −0.02 −0.00 0.01 0.02 0.03 0.05 0.06 0.10
βJUMP −0.07 −0.04 −0.03 −0.02 −0.02 −0.01 −0.00 0.01 0.02 0.05
COSKEW −1.88 −1.39 −1.21 −0.99 −0.80 −0.78 −0.69 −0.61 −0.48 −0.11
β∆SKEW 0.11 0.07 0.10 −0.08 −0.14 −0.14 −0.08 −0.12 −0.10 −0.38
βTAIL 0.31 0.27 0.25 0.23 0.23 0.23 0.24 0.24 0.24 0.25
IVOL 3.74 3.18 2.93 2.82 2.79 2.86 2.97 3.15 3.38 3.94

Panel B: Liquid Sample

Variable β
B

E
A

R
1

β
B

E
A

R
2

β
B

E
A

R
3

β
B

E
A

R
4

β
B

E
A

R
5

β
B

E
A

R
6

β
B

E
A

R
7

β
B

E
A

R
8

β
B

E
A

R
9

β
B

E
A

R
10

βCAPM 1.07 1.00 0.98 0.97 0.99 1.03 1.08 1.16 1.26 1.44
β− 1.18 1.05 1.02 1.00 1.01 1.04 1.08 1.16 1.25 1.39
β− − βCAPM 0.10 0.06 0.04 0.03 0.02 0.01 0.01 0.00 −0.01 −0.05
β∆VIX −0.02 −0.01 −0.00 0.01 0.01 0.02 0.03 0.06 0.07 0.13
βVOL −0.05 −0.02 −0.02 −0.01 −0.00 0.01 0.02 0.03 0.04 0.09
βJUMP −0.05 −0.03 −0.02 −0.01 −0.01 −0.00 0.00 0.01 0.02 0.05
COSKEW −0.66 −0.27 −0.31 −0.25 −0.11 −0.06 0.02 0.16 0.39 0.87
β∆SKEW 0.16 −0.07 −0.04 −0.02 −0.23 −0.09 −0.13 −0.15 −0.14 −0.20
βTAIL 0.15 0.14 0.13 0.14 0.14 0.14 0.14 0.15 0.15 0.14
IVOL 2.39 2.02 1.93 1.89 1.93 2.01 2.12 2.29 2.53 2.99
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Table 6: βBEAR-Sorted Portfolio Average Risk Variables - continued

Panel C: Large Cap Sample

Variable β
B

E
A

R
1

β
B

E
A

R
2

β
B

E
A

R
3

β
B

E
A

R
4

β
B

E
A

R
5

β
B

E
A

R
6

β
B

E
A

R
7

β
B

E
A

R
8

β
B

E
A

R
9

β
B

E
A

R
10

βCAPM 1.02 0.93 0.91 0.91 0.93 0.95 1.00 1.06 1.18 1.39
β− 1.11 0.98 0.95 0.94 0.95 0.96 1.00 1.06 1.16 1.35
β− − βCAPM 0.09 0.04 0.03 0.03 0.02 0.01 0.00 −0.00 −0.01 −0.04
β∆VIX −0.03 −0.02 −0.01 −0.01 −0.00 0.00 0.01 0.04 0.05 0.11
βVOL −0.05 −0.02 −0.02 −0.01 −0.00 0.00 0.01 0.02 0.03 0.07
βJUMP −0.04 −0.02 −0.02 −0.01 −0.01 −0.00 0.00 0.01 0.02 0.05
COSKEW −0.23 −0.04 −0.05 −0.07 0.08 0.25 0.33 0.45 0.61 1.31
β∆SKEW −0.02 −0.17 −0.24 −0.16 −0.13 −0.23 −0.13 −0.14 −0.17 −0.31
βTAIL 0.09 0.09 0.10 0.10 0.10 0.10 0.11 0.10 0.10 0.08
IVOL 1.96 1.65 1.59 1.56 1.60 1.63 1.71 1.83 2.04 2.46

Table 7: Bivariate βBEAR-Sorted Portfolios-Sorted Portfolios
The table below presents the results of bivariate portfolio analyses using a control variable and
βBEAR as the sort variables. The control variable is one of βCAPM, β−, β− − βCAPM, β∆VIX,
βVOL, βJUMP, COSKEW, β∆SKEW, βTAIL, or IVOL. Each month t, all stocks in the sample are
sorted into decile groups based on an ascending sort on the control variable. Within each control
variable group, the stocks are sorted into decile portfolios based on an ascending sort on βBEAR.
The monthly value-weighted excess returns for each of the resulting 100 portfoliosare calculated.
Within each βBEAR decile, we then calculate the equal-weighted average of the portfolio excess
returns across the deciles of the control variable, which we refer to as the bivariate βBEAR decile
portfolios. The βBEAR 10−1 portfolio is a zero-investment portfolio that is long the bivariate βBEAR

decile 10 portfolio and short the bivariate βBEAR decile one portfolio. The table presents the time-
series averages of the month t+ 1 excess returns for the bivariate βBEAR decile portfolios. For the
βBEAR 10− 1 portfolios, the table shows the time-series averages of the month t+ 1 excess returns,
alphas (α) relative to the CAPM, FF3, FFC, Q, and FF5 factor models, and factor sensitivities
relative to the FF5 factors. t-statistics, adjusted following Newey and West (1987) using three
lags are presented in parentheses. The analyses that control for βJUMP or βVOL cover the cover
the 184 months t (return months t+ 1) from December 1996 (January 1997) through March 2012
(April 2012). The analysis that controls for β∆SKEW covers the cover the 133 months t (return
months t + 1) from December 1996 (January 1997) through December 2007 (January 2008). All
other analyses cover the 225 months t (return months t+ 1) from December 1996 (January 1997)
through August 2015 (September 2015). Panels A, B, and C present results for the All Stocks,
Liquid, and Large Cap samples, respectively.
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Table 7: Bivariate βBEAR-Sorted Portfolios-Sorted Portfolios - continued

Panel A: All Stocks Sample

Model Value β
C

A
P

M
A

v
g

β
−

A
v
g

β
−
−
β

C
A

P
M

A
v
g

β
∆

V
IX

A
v
g

β
V

O
L

A
v
g

β
J
U

M
P

A
v
g

C
O

S
K

E
W

A
v
g

β
∆

S
K

E
W

A
v
g

β
T

A
IL

A
v
g

IV
O

L
A

v
g

βBEAR 1 Excess Return Excess Return 0.83 0.86 0.90 0.97 0.89 0.98 1.10 1.22 1.05 0.89
βBEAR 2 0.60 0.69 0.80 0.80 0.69 0.75 0.77 0.57 0.84 0.77
βBEAR 3 0.59 0.66 0.75 0.66 0.65 0.53 0.83 0.76 0.66 0.42
βBEAR 4 0.61 0.46 0.67 0.66 0.62 0.78 0.66 0.54 0.63 0.48
βBEAR 5 0.69 0.66 0.47 0.44 0.54 0.41 0.60 0.37 0.69 0.58
βBEAR 6 0.57 0.60 0.53 0.67 0.71 0.52 0.74 0.72 0.66 0.56
βBEAR 7 0.67 0.70 0.71 0.55 0.65 0.44 0.57 0.60 0.62 0.68
βBEAR 8 0.45 0.45 0.44 0.45 0.15 0.42 0.44 0.33 0.63 0.54
βBEAR 9 0.48 0.47 0.47 0.40 0.24 0.16 0.51 0.19 0.48 0.28
βBEAR 10 0.16 0.17 −0.07 −0.08 −0.28 −0.16 0.02 −0.43 0.20 −0.01

βBEAR 10-1 Excess Return Excess Returns −0.67 −0.69 −0.97 −1.05 −1.17 −1.14 −1.07 −1.65 −0.84 −0.90
(−2.78) (−3.00) (−2.55) (−2.66) (−2.62) (−2.64) (−3.06) (−2.58) (−2.75) (−2.48)

CAPM α −0.79 −0.83 −1.26 −1.35 −1.41 −1.37 −1.35 −2.02 −1.11 −1.14
(−3.20) (−3.49) (−3.25) (−3.38) (−3.11) (−3.22) (−3.82) (−3.36) (−3.84) (−3.08)

FF3 α −0.74 −0.79 −1.13 −1.22 −1.29 −1.24 −1.23 −1.34 −1.02 −1.05
(−3.13) (−3.84) (−3.78) (−3.88) (−3.45) (−3.73) (−4.25) (−2.86) (−4.03) (−3.35)

FFC α −0.79 −0.76 −1.05 −1.20 −1.25 −1.28 −1.17 −1.48 −0.93 −0.99
(−3.14) (−3.27) (−3.12) (−3.48) (−3.22) (−3.77) (−3.48) (−2.81) (−3.18) (−2.90)

Q α −0.55 −0.56 −0.73 −0.79 −0.87 −0.93 −0.83 −1.24 −0.67 −0.72
(−2.28) (−2.40) (−2.41) (−2.24) (−2.34) (−2.90) (−2.51) (−2.34) (−2.51) (−2.27)

FF5 α −0.55 −0.58 −0.68 −0.69 −0.71 −0.76 −0.82 −0.95 −0.61 −0.67
(−2.32) (−2.71) (−2.50) (−2.39) (−2.08) (−2.39) (−2.89) (−2.23) (−2.39) (−2.44)

βMKT −0.03 0.02 0.17 0.12 0.15 0.15 0.15 −0.01 0.16 0.16
(−0.46) (0.22) (1.67) (1.07) (1.26) (1.36) (1.32) (−0.03) (1.87) (1.66)

βSMB5 0.47 0.47 0.31 0.35 0.32 0.35 0.38 0.27 0.33 0.18
(3.64) (4.02) (2.08) (1.93) (1.68) (2.09) (2.28) (1.34) (2.62) (1.13)

βHML −0.30 −0.20 −0.25 −0.20 −0.23 −0.32 −0.28 −0.67 −0.07 −0.08
(−1.79) (−1.19) (−1.09) (−0.79) (−0.81) (−1.24) (−1.12) (−2.40) (−0.37) (−0.32)

βRMW −0.29 −0.23 −0.58 −0.74 −0.68 −0.54 −0.53 −0.46 −0.47 −0.48
(−1.61) (−1.41) (−2.28) (−2.83) (−2.64) (−1.97) (−2.17) (−1.63) (−2.37) (−2.14)

βCMA −0.24 −0.46 −0.79 −0.87 −0.83 −0.75 −0.73 −0.89 −0.84 −0.67
(−1.12) (−1.82) (−2.31) (−2.13) (−2.20) (−1.85) (−1.91) (−1.66) (−2.53) (−2.20)
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Table 7: Bivariate βBEAR-Sorted Portfolios-Sorted Portfolios - continued

Panel B: Liquid Sample

Model Value β
C

A
P

M
A

v
g

β
−

A
v
g

β
−
−
β

C
A

P
M

A
v
g

β
∆

V
IX

A
v
g

β
V

O
L

A
v
g

β
J
U

M
P

A
v
g

C
O

S
K

E
W

A
v
g

β
∆

S
K

E
W

A
v
g

β
T

A
IL

A
v
g

IV
O

L
A

v
g

βBEAR 1 Excess Return Excess Return 0.77 0.82 0.88 0.89 0.90 0.90 0.94 1.03 0.98 0.89
βBEAR 2 0.64 0.54 0.84 0.93 0.71 0.82 0.84 0.88 0.89 0.82
βBEAR 3 0.64 0.60 0.74 0.59 0.71 0.47 0.80 0.55 0.57 0.67
βBEAR 4 0.61 0.45 0.62 0.52 0.65 0.65 0.71 0.53 0.69 0.60
βBEAR 5 0.57 0.68 0.56 0.73 0.71 0.63 0.74 0.79 0.64 0.58
βBEAR 6 0.54 0.66 0.62 0.54 0.70 0.41 0.67 0.75 0.64 0.55
βBEAR 7 0.48 0.57 0.61 0.54 0.36 0.32 0.46 0.41 0.65 0.68
βBEAR 8 0.44 0.54 0.41 0.36 0.27 0.33 0.49 0.28 0.57 0.40
βBEAR 9 0.47 0.57 0.38 0.44 0.21 0.23 0.43 0.11 0.39 0.36
βBEAR 10 0.10 0.05 −0.06 −0.17 −0.32 −0.12 −0.04 −0.50 0.18 0.09

βBEAR 10-1 Excess Return Excess Returns −0.67 −0.77 −0.93 −1.07 −1.21 −1.02 −0.98 −1.53 −0.80 −0.81
(−3.21) (−3.25) (−2.43) (−2.56) (−2.60) (−2.24) (−2.73) (−2.43) (−2.67) (−2.47)

CAPM α −0.78 −0.94 −1.26 −1.40 −1.50 −1.27 −1.31 −1.92 −1.08 −1.02
(−3.81) (−4.07) (−3.36) (−3.31) (−3.29) (−2.78) (−3.94) (−3.23) (−3.71) (−3.11)

FF3 α −0.75 −0.92 −1.15 −1.28 −1.40 −1.12 −1.21 −1.32 −1.00 −0.95
(−3.92) (−4.40) (−4.21) (−4.05) (−3.82) (−3.47) (−4.33) (−2.99) (−3.98) (−3.50)

FFC α −0.78 −0.91 −1.04 −1.18 −1.32 −1.14 −1.10 −1.41 −0.90 −0.92
(−3.75) (−3.90) (−3.32) (−3.39) (−3.45) (−3.36) (−3.44) (−2.77) (−3.16) (−3.10)

Q α −0.69 −0.82 −0.74 −0.84 −0.93 −0.80 −0.83 −1.22 −0.63 −0.70
(−3.10) (−3.52) (−2.68) (−2.57) (−2.75) (−2.52) (−2.75) (−2.34) (−2.35) (−2.50)

FF5 α −0.70 −0.81 −0.67 −0.78 −0.75 −0.65 −0.79 −0.92 −0.58 −0.64
(−3.31) (−3.95) (−2.82) (−2.85) (−2.40) (−2.17) (−3.06) (−2.23) (−2.38) (−2.60)

βMKT 0.07 0.16 0.24 0.22 0.23 0.18 0.26 0.09 0.22 0.16
(1.28) (2.29) (2.54) (2.18) (1.97) (1.68) (2.42) (0.50) (2.45) (2.30)

βSMB5 0.36 0.40 0.31 0.36 0.32 0.38 0.35 0.31 0.23 0.16
(3.85) (3.36) (2.14) (2.04) (1.70) (2.38) (2.25) (1.56) (1.87) (1.14)

βHML −0.28 −0.13 −0.13 −0.14 −0.09 −0.38 −0.14 −0.52 0.03 −0.10
(−2.09) (−0.77) (−0.61) (−0.64) (−0.33) (−1.61) (−0.60) (−1.85) (0.13) (−0.55)

βRMW −0.09 −0.04 −0.59 −0.59 −0.72 −0.49 −0.50 −0.44 −0.42 −0.44
(−0.59) (−0.24) (−2.26) (−2.11) (−2.55) (−1.72) (−2.20) (−1.60) (−2.24) (−2.02)

βCMA −0.04 −0.37 −0.89 −1.01 −1.00 −0.78 −0.80 −0.95 −0.95 −0.48
(−0.21) (−1.19) (−2.61) (−2.80) (−2.49) (−1.91) (−2.20) (−1.74) (−2.73) (−1.81)
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Table 7: Bivariate βBEAR-Sorted Portfolios-Sorted Portfolios - continued

Panel C: Large Cap Sample

Model Value β
C
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A
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g
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−
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β
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β
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A
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g
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O

L
A

v
g

βBEAR 1 Excess Return Excess Return 0.71 0.70 0.84 0.80 0.81 0.93 0.83 0.88 0.86 0.85
βBEAR 2 0.68 0.61 0.87 0.90 0.60 0.54 0.91 0.94 0.86 0.93
βBEAR 3 0.58 0.60 0.69 0.74 0.79 0.73 0.71 0.68 0.65 0.73
βBEAR 4 0.64 0.58 0.69 0.66 0.54 0.62 0.67 0.60 0.68 0.51
βBEAR 5 0.57 0.61 0.47 0.61 0.70 0.61 0.72 0.71 0.63 0.56
βBEAR 6 0.53 0.70 0.59 0.59 0.70 0.53 0.58 0.90 0.65 0.50
βBEAR 7 0.55 0.66 0.67 0.52 0.31 0.32 0.69 0.52 0.75 0.74
βBEAR 8 0.47 0.41 0.38 0.40 0.16 0.28 0.36 0.32 0.44 0.40
βBEAR 9 0.57 0.47 0.42 0.34 0.19 0.28 0.45 0.12 0.39 0.29
βBEAR 10 0.17 0.27 0.02 −0.06 −0.30 0.00 0.02 −0.41 0.20 0.28

βBEAR 10-1 Excess Return Excess Returns −0.54 −0.43 −0.81 −0.86 −1.11 −0.92 −0.81 −1.29 −0.66 −0.57
(−2.83) (−2.04) (−2.09) (−2.43) (−2.47) (−2.03) (−2.45) (−2.20) (−2.25) (−1.87)

CAPM α −0.66 −0.59 −1.12 −1.16 −1.39 −1.17 −1.14 −1.67 −0.92 −0.78
(−3.52) (−2.96) (−2.87) (−3.26) (−3.18) (−2.68) (−3.56) (−2.94) (−3.08) (−2.43)

FF3 α −0.63 −0.56 −1.01 −1.04 −1.26 −1.02 −1.03 −1.05 −0.81 −0.69
(−3.59) (−3.31) (−3.58) (−3.95) (−3.68) (−3.35) (−4.06) (−2.54) (−3.53) (−2.77)

FFC α −0.65 −0.50 −0.93 −0.96 −1.21 −1.08 −0.93 −1.17 −0.69 −0.68
(−3.56) (−2.86) (−3.03) (−3.40) (−3.39) (−3.50) (−3.45) (−2.66) (−2.74) (−2.53)

Q α −0.58 −0.39 −0.59 −0.67 −0.84 −0.71 −0.69 −0.98 −0.47 −0.44
(−2.85) (−2.17) (−2.26) (−2.53) (−2.59) (−2.37) (−2.70) (−2.18) (−1.97) (−1.81)

FF5 α −0.58 −0.43 −0.50 −0.59 −0.69 −0.52 −0.64 −0.67 −0.44 −0.39
(−3.04) (−2.59) (−2.14) (−2.47) (−2.44) (−2.05) (−2.74) (−1.78) (−2.02) (−1.74)

βMKT 0.12 0.17 0.20 0.21 0.27 0.17 0.29 0.10 0.23 0.16
(2.29) (3.10) (2.30) (2.26) (2.52) (1.83) (2.98) (0.60) (2.71) (2.65)

βSMB5 0.26 0.23 0.21 0.24 0.20 0.31 0.26 0.24 0.15 0.12
(3.20) (2.59) (1.43) (1.52) (1.13) (2.04) (1.81) (1.29) (1.22) (0.96)

βHML −0.24 −0.11 −0.10 −0.15 −0.13 −0.34 −0.16 −0.59 −0.06 −0.14
(−1.97) (−0.72) (−0.49) (−0.74) (−0.51) (−1.49) (−0.76) (−2.12) (−0.29) (−0.85)

βRMW −0.12 −0.13 −0.72 −0.59 −0.65 −0.58 −0.47 −0.47 −0.34 −0.41
(−0.80) (−0.86) (−2.92) (−2.31) (−2.42) (−2.21) (−2.32) (−1.61) (−1.93) (−1.89)

βCMA 0.01 −0.31 −0.78 −0.79 −0.87 −0.72 −0.76 −0.83 −0.91 −0.48
(0.05) (−1.50) (−2.66) (−2.22) (−2.48) (−1.96) (−2.31) (−1.71) (−2.73) (−2.01)
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Table 8: Fama and MacBeth Regression Analyses
The table below presents the results of Fama and MacBeth (1973) regressions of month t + 1
stock excess stock returns on month t βBEAR and control variables. The table presents the
time-series averages of the monthly cross-sectional regression coefficients. t-statistics, adjusted
following Newey and West (1987) using three lags, are presented in parentheses. Also reported
are the average adjusted R-squared (Adj. R2) and the average number of observations (n). All
independent variables are winsorized at the 0.5% and 99.5% level on a monthly basis. Each column
presents results for a different regression specification. The specification that includes βJUMP and
βVOL covers the 184 months t (return months t+ 1) from December 1996 (January 1997) through
March 2012 (April 2012). The specification that includes β∆SKEW covers the 133 months t (return
months t + 1) from December 1996 (January 1997) through December 2007 (January 2008). All
other specifications cover the 225 months t (return months t + 1) from December 1996 (January
1997) through August 2015 (September 2015). Panels A, B, and C present results for the All
Stocks, Liquid, and Large Cap samples, respectively.

Panel A: All Stocks Sample
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

βBEAR −0.46 −0.36 −0.37 −0.36 −0.42 −0.42 −0.42 −0.41 −0.34 −0.39 −0.32
(−2.27) (−2.06) (−2.19) (−2.16) (−2.22) (−2.48) (−1.72) (−2.58) (−2.44) (−3.10) (−3.08)

βCAPM −0.15 −0.10 −0.15 −0.07 −0.14 −0.23 −0.12 −0.13 −0.05 0.32
(−0.56) (−0.39) (−0.57) (−0.23) (−0.53) (−0.57) (−0.46) (−0.51) (−0.20) (1.25)

β− −0.08 −0.06 −0.12
(−0.42) (−0.45) (−1.02)

β∆VIX −0.02 −0.06 −0.05
(−0.36) (−1.66) (−1.33)

βJUMP 0.20
(0.41)

βVOL 0.16
(0.75)

COSKEW −0.01 −0.01 −0.00
(−0.96) (−0.83) (−0.12)

β∆SKEW −0.00
(−0.24)

βTAIL 0.11 0.19 0.15
(0.71) (1.48) (1.61)

IVOL −0.14 −0.12 −0.23
(−1.99) (−1.81) (−5.08)

SIZE −0.18
(−2.80)

BM 0.01
(0.08)

MOM 0.00
(0.51)

ILLIQ 0.00
(5.18)

Y 0.13
(1.06)

INV −0.86
(−5.20)

Intercept 0.85 0.97 0.99 0.97 0.87 1.03 1.07 0.99 1.25 1.21 2.13
(1.77) (2.22) (2.32) (2.23) (1.68) (2.36) (2.04) (2.38) (3.84) (3.86) (3.92)

Adj. R2 0.58% 2.22% 2.45% 2.35% 2.73% 2.32% 2.71% 2.53% 3.68% 4.25% 5.82%
n 4775 4775 4775 4774 5049 4363 5463 4074 4774 4065 324552



Table 8: Fama and MacBeth Regression Analyses - continued

Panel B: Liquid Sample
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

βBEAR −0.68 −0.50 −0.49 −0.50 −0.50 −0.54 −0.64 −0.46 −0.46 −0.40 −0.33
(−2.54) (−2.82) (−2.77) (−2.94) (−2.71) (−2.97) (−2.36) (−2.74) (−2.81) (−2.62) (−2.43)

βCAPM 0.06 0.17 0.08 0.19 0.10 0.07 0.05 0.17 0.20 0.16
(0.14) (0.45) (0.19) (0.38) (0.24) (0.13) (0.13) (0.46) (0.56) (0.51)

β− −0.16 −0.11 −0.20
(−0.63) (−0.49) (−1.03)

β∆VIX −0.10 −0.12 −0.08
(−1.42) (−1.92) (−1.43)

βJUMP 0.15
(0.20)

βVOL −0.07
(−0.29)

COSKEW −0.00 0.00 0.00
(−0.30) (0.06) (0.38)

β∆SKEW 0.01
(0.56)

βTAIL 0.11 0.10 0.13
(0.80) (0.84) (1.29)

IVOL −0.16 −0.13 −0.12
(−2.12) (−1.79) (−2.33)

SIZE −0.14
(−2.00)

BM −0.05
(−0.59)

MOM 0.00
(0.33)

ILLIQ 0.27
(0.90)

Y 0.18
(1.26)

INV −0.59
(−3.56)

Intercept 0.72 0.71 0.76 0.70 0.53 0.72 0.69 0.75 0.86 0.91 1.82
(1.73) (2.29) (2.60) (2.31) (1.53) (2.45) (1.65) (2.59) (2.57) (3.00) (2.80)

Adj. R2 1.35% 4.94% 5.43% 5.30% 6.14% 5.19% 6.08% 5.33% 5.94% 7.19% 9.77%
n 2039 2039 2039 2039 2106 1917 2236 1823 2039 1823 1569
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Table 8: Fama and MacBeth Regression Analyses - continued

Panel C: Large Cap Sample
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

βBEAR −0.83 −0.64 −0.65 −0.62 −0.66 −0.65 −0.94 −0.54 −0.57 −0.49 −0.45
(−2.71) (−2.83) (−2.86) (−2.93) (−3.14) (−2.81) (−2.70) (−2.46) (−2.57) (−2.24) (−2.25)

βCAPM 0.10 0.31 0.12 0.20 0.12 0.27 0.08 0.16 0.25 0.33
(0.24) (0.74) (0.30) (0.41) (0.28) (0.50) (0.19) (0.42) (0.64) (0.89)

β− −0.25 −0.16 −0.35
(−0.91) (−0.60) (−1.40)

β∆VIX −0.07 −0.09 −0.07
(−0.75) (−0.96) (−0.78)

βJUMP −0.59
(−0.60)

βVOL 0.20
(0.56)

COSKEW −0.01 −0.01 −0.01
(−0.86) (−0.79) (−0.70)

β∆SKEW 0.01
(0.59)

βTAIL 0.10 0.10 0.14
(0.65) (0.70) (1.20)

IVOL −0.09 −0.05 −0.06
(−1.17) (−0.81) (−1.07)

SIZE −0.13
(−2.28)

BM 0.03
(0.31)

MOM 0.00
(0.73)

ILLIQ −0.01
(−0.13)

Y 0.23
(1.23)

INV −0.44
(−2.62)

Intercept 0.68 0.63 0.68 0.61 0.45 0.64 0.43 0.68 0.73 0.73 1.77
(1.84) (2.24) (2.53) (2.18) (1.49) (2.36) (1.11) (2.57) (2.32) (2.58) (3.33)

Adj. R2 2.11% 7.14% 7.84% 7.67% 8.97% 7.38% 8.98% 7.57% 8.01% 9.68% 13.14%
n 1005 1005 1005 1005 1022 963 1073 932 1005 932 784
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Table 9: Fama and MacBeth Regression Analyses - k-Month-Ahead Returns
The table below presents the results of Fama and MacBeth (1973) regression analyses of the
relation between future stock excess stock returns and βBEAR and control variables. Each month t
we run a cross-sectional regression of month t+ k excess stock returns on βBEAR and combinations
of the control variables, for k ∈ 2, 3, 4, 5, 6. The table presents the time-series averages of the
monthly cross-sectional regression coefficients on βBEAR. t-statistics, adjusted following Newey
and West (1987) using three lags, testing the null hypothesis that the average coefficient is equal
to zero, are presented in parentheses. Each column presents results for a different regression
specification. The specifications used in columns (1)-(11) correspond to the specifications used in
the corresponding columns of Table 8. All independent variables are winsorized at the 0.5% and
99.5% level on a monthly basis. The row labeled Rt+k presents results using the k-month-ahead
excess stock return as the dependent variable. The specification that includes βJUMP and βVOL

covers the 184 months t from December 1996 through March 2012. The specification that
includes β∆SKEW covers the 133 months t from December 1996 through December 2007. All other
specifications cover the 225 months t from December 1996 through August 2015. Panels A, B, and
C present results for the All Stocks, Liquid, and Large Cap samples, respectively.

Panel A: All Stocks Sample
Dependent Variable (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Rt+2 −0.55 −0.48 −0.50 −0.48 −0.61 −0.58 −0.49 −0.54 −0.40 −0.48 −0.38
(−2.90) (−3.01) (−3.15) (−3.04) (−3.21) (−3.72) (−2.42) (−3.74) (−3.18) (−3.98) (−3.91)

Rt+3 −0.59 −0.53 −0.54 −0.52 −0.69 −0.64 −0.61 −0.62 −0.46 −0.56 −0.45
(−3.18) (−3.59) (−3.79) (−3.55) (−3.90) (−4.39) (−3.36) (−4.46) (−3.70) (−4.67) (−4.35)

Rt+4 −0.63 −0.55 −0.56 −0.54 −0.65 −0.63 −0.55 −0.63 −0.47 −0.55 −0.40
(−3.35) (−3.70) (−3.83) (−3.71) (−3.53) (−4.29) (−3.17) (−4.34) (−3.82) (−4.34) (−3.64)

Rt+5 −0.60 −0.53 −0.54 −0.53 −0.61 −0.60 −0.51 −0.61 −0.46 −0.55 −0.41
(−2.95) (−3.08) (−3.22) (−3.05) (−2.80) (−3.48) (−2.55) (−3.48) (−3.31) (−3.80) (−3.31)

Rt+6 −0.59 −0.53 −0.53 −0.52 −0.61 −0.58 −0.63 −0.57 −0.46 −0.52 −0.37
(−2.86) (−2.95) (−3.10) (−2.98) (−2.72) (−3.38) (−2.97) (−3.21) (−3.16) (−3.57) (−3.08)

Panel B: Liquid Sample
Dependent Variable (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Rt+2 −0.76 −0.58 −0.61 −0.58 −0.65 −0.63 −0.62 −0.56 −0.52 −0.54 −0.42
(−2.85) (−3.33) (−3.37) (−3.32) (−3.30) (−3.54) (−2.64) (−3.31) (−3.32) (−3.42) (−3.13)

Rt+3 −0.73 −0.55 −0.58 −0.54 −0.72 −0.58 −0.71 −0.53 −0.46 −0.51 −0.39
(−2.76) (−3.32) (−3.41) (−3.29) (−3.65) (−3.43) (−3.51) (−3.19) (−3.06) (−3.07) (−2.69)

Rt+4 −0.73 −0.54 −0.55 −0.53 −0.64 −0.55 −0.59 −0.50 −0.48 −0.46 −0.34
(−2.72) (−3.08) (−3.11) (−3.07) (−3.40) (−3.07) (−3.09) (−2.88) (−3.02) (−2.76) (−2.26)

Rt+5 −0.66 −0.47 −0.47 −0.47 −0.49 −0.47 −0.50 −0.43 −0.40 −0.39 −0.31
(−2.46) (−2.63) (−2.73) (−2.69) (−2.28) (−2.65) (−2.62) (−2.41) (−2.56) (−2.45) (−2.20)

Rt+6 −0.68 −0.48 −0.49 −0.48 −0.54 −0.46 −0.64 −0.40 −0.44 −0.40 −0.29
(−2.51) (−2.48) (−2.62) (−2.68) (−2.21) (−2.38) (−2.78) (−2.03) (−2.43) (−2.36) (−1.92)

Panel C: Large Cap Sample
Dependent Variable (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Rt+2 −0.89 −0.72 −0.72 −0.70 −0.82 −0.74 −0.79 −0.68 −0.63 −0.61 −0.51
(−3.02) (−3.43) (−3.38) (−3.41) (−3.87) (−3.36) (−2.69) (−3.20) (−3.15) (−2.91) (−2.71)

Rt+3 −0.74 −0.60 −0.65 −0.58 −0.79 −0.62 −0.72 −0.60 −0.53 −0.58 −0.48
(−2.70) (−3.39) (−3.62) (−3.31) (−4.27) (−3.43) (−2.94) (−3.39) (−3.15) (−3.29) (−3.16)

Rt+4 −0.64 −0.48 −0.50 −0.45 −0.59 −0.46 −0.60 −0.47 −0.43 −0.43 −0.28
(−2.47) (−2.80) (−3.01) (−2.69) (−3.34) (−2.57) (−2.55) (−2.79) (−2.67) (−2.62) (−1.89)

Rt+5 −0.66 −0.51 −0.53 −0.51 −0.56 −0.49 −0.61 −0.46 −0.47 −0.47 −0.36
(−2.33) (−2.82) (−2.92) (−3.01) (−2.97) (−2.68) (−2.80) (−2.53) (−2.74) (−2.73) (−2.44)

Rt+6 −0.73 −0.56 −0.55 −0.53 −0.64 −0.50 −0.63 −0.50 −0.51 −0.46 −0.40
(−2.35) (−2.59) (−2.51) (−2.80) (−2.84) (−2.33) (−2.57) (−2.27) (−2.45) (−2.45) (−2.43)55


